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ABSTRACT
In machine learning, continuously retraining a model guarantees

accurate predictions based on the latest data as training input. But

to retrieve the latest data from a database, time-consuming extrac-

tion is necessary as database systems have rarely been used for

operations such as matrix algebra and gradient descent.

In this work, we demonstrate that SQL with recursive tables

makes it possible to express a complete machine learning pipeline

out of data preprocessing, model training and its validation. To

facilitate the specification of loss functions, we extend the code-

generating database system Umbra by an operator for automatic

differentiation for usewithin recursive tables:With the loss function

expressed in SQL as a lambda function, Umbra generates machine

code for each partial derivative. We further use automatic differen-

tiation for a dedicated gradient descent operator, which generates

LLVM code to train a user-specified model on GPUs. We fine-tune

GPU kernels at hardware level to allow a higher throughput and

propose non-blocking synchronisation of multiple units.

In our evaluation, automatic differentiation accelerated the run-

time by the number of cached subexpressions compared to compil-

ing each derivative separately. Our GPU kernels with independent

models allowed maximal throughput even for small batch sizes,

making machine learning pipelines within SQL more competitive.
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1 INTRODUCTION
Typically, steps of machine learning pipelines—that consist of data

preprocessing [6, 17], model training/validation [9] and finally
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Figure 1: In-database machine learning: gradient descent
with GPU support, embedded in a query plan.

its deployment on unlabelled data [64]—are embedded in Python

scripts that call up specialised tools such as NumPy, TensorFlow,

Theano or Pytorch. Hereby, especially tensor operations and model

training are co-processed on graphical processing units (GPUs) or

tensor processing units (TPUs) developed for this purpose.

Integrating machine learning pipelines into database systems is

a promising approach for data-driven applications [1, 15, 19, 57, 62].

Even though specialised tools will outperform general-purpose solu-

tions, we argue that an integration in database systems will simplify

data provenance and its lineage, and allows complex queries as in-

put. So far, machine learning pipelines inside of database queries

are assembled from user-defined functions [13, 30, 41, 54, 65] and

operators of an extended relational algebra. This brings the model

close to the data source [58] with SQL [2] as the only query lan-

guage. As modern HTAP main-memory database systems such

as SAP HANA [38], HyPer [20, 27, 39, 46] and Umbra [26, 40, 45]

are designed for transactional and analytical workload, this allows

the latest database state to be queried [24, 43]. But for continuous

machine learning based on the latest tuples, only stand-alone so-

lutions exist [3, 11] whose pipelines retrain weights for a model

partially [31] when new input data is available.

In the last decade, research on database systems has focused

on GPU co-processing to accelerate query engines [22, 55, 56, 63].

GPUs, initially intended for image processing and parallel com-

putations of vectorised data, also allow general-purpose computa-

tions (GPGPU). In the context of machine learning, matrix opera-

tions [12, 33] and gradient descent [23, 36] profit from vectorised

processing [5] available on GPUs [28]. Vectorised instructions ac-

celerate model training and matrix computations—as the same in-

structions are applied elementwise. When a linear model is trained,

vectorised instructions allow the loss as well as the gradient to be

computed for multiple tuples in parallel.

https://doi.org/10.1145/3468791.3468840
https://doi.org/10.1145/3468791.3468840
https://doi.org/10.1145/3468791.3468840
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We argue that SQL is sufficient to formulate a complete machine

learning pipeline. Our database system, Umbra, is a computational

database engine that offers—in addition to standardised SQL:2003

features—a matrix datatype, a data sampling operator [7] and con-

tinuous views [59]. A continuous view [35, 67, 68] updates precom-

puted aggregates on incoming input. This kind of view—combined

with sampling [4, 16, 18, 60, 66]—can be used as source to train and

retrain a model partially within a recursive table.

This work starts by expressing gradient descent as a recursive

table as well as the views needed for data preprocessing in SQL.

Instead of manually deriving the gradient, we propose an operator

for automatic differentiation. Based on automatic differentiation,

we will proceed with an operator for gradient descent to be able

to off-load work to GPUs (see Figure 1). In particular, this work’s

contributions are

• machine learning pipelines expressed in pure SQL,

• automatic differentiation in SQL that uses a lambda function

to derive the gradient and generates LLVM code,

• the integration of gradient descent as a database operator,

• fine-tuned GPU kernels that maximise the GPU specific

throughput even for small and medium batch sizes,

• and an evaluation of strategies for synchronising gradient

descent on processing units with different throughput.

The paper first summarises subsidiary work on machine learning

pipelines, GPU co-processing and in-database machine learning

(Section 2), before it proceeds with the integration of gradient

descent inside a database system. In detail, we focus on data prepro-

cessing for machine learning pipelines and recursive computation

of gradient descent within the code generating database system Um-

bra (Section 3). During code-generation, an operator for automatic

differentiation compiles the gradient from a lambda expression

(Section 4). Based on automatic differentiation and a dedicated op-

erator for gradient descent, we compile LLVM code directly for

GPUs. The generated code processes mini batches on GPUs and

synchronises parallel workers on multiple devices as well as multi-

ple learners on a single GPU (Section 5). We will evaluate CPU and

GPU-only approaches in terms of performance and accuracy using

a NUMA-server cluster with multiple GPUs (Section 6).

2 RELATEDWORK
This work incorporates past research on deploying continuous

machine learning pipelines, GPU co-processing and in-database

machine learning, which is here introduced.

Machine Learning Pipelines. To cover the life-cycle of ma-

chine learning pipelines, automatic machine learning (AutoML)

tools such as Lara [29] assist in data preprocessing as well as find-

ing the best hyper-parameters. Basically, our work ties in with the

idea of continuous deployment of machine learning pipelines [11].

The idea is based on an architecture that monitors the input stream

and avoids complete retraining by sampling batches.

Database Systems andMachine Learning. In the last decade,

research has focused on integrating techniques of database systems

into dedicated machine learning tools. One example of this kind of

independent system is SystemML, with its own declarative program-

ming language, and its successor SystemDS [8]. The integration of

machine learning pipelines inside database systems would allow

end-to-end machine learning [48, 49] and would inherit benefits

such as query optimisation and recovery by design [37]. The work

of Jankov et al. [21] states that complete integration is possible by

means of the extension of SQL with additional recursive statements

as used in our study. As a layer above database systems that also

uses SQL, LMFAO [44] learns models on pre-aggregated data.

GPU Acceleration. Crossbow [28] is a machine learning frame-

work, written in Java, that maintains and synchronises local models

for independent learners that call C++ functions to access NVIDIA’s

deep neural network library cuDNN 1
. We rely on the study when

adjusting batch sizes for GPUs and synchronising multiple workers.

JIT Compiling for GPU. The LLVM compiler framework, of-

ten used for code generation within database engines [14, 51, 53],

also offers just-in-time compilation for NVIDIA’s Compute Unified

Device Architecture (CUDA) [34]. Code compilation for GPU allows

compilation for heterogeneous CPU-GPU clusters [32] as LLVM

addresses multiple target architectures as used in this study.

3 IN-DATABASE GRADIENT DESCENT
This section first introduces mini-batch gradient descent, before

describing a complete machine learning pipeline in SQL.

3.1 Mini-Batch Gradient Descent
Optimisation methods such as gradient descent try to find the best

parameters ®𝑤∞ of a model function𝑚 ®𝑤 ( ®𝑥), e.g., a linear function
that approximates a given label 𝑦. A loss function 𝑙𝑋,𝑦 ( ®𝑤) measures

the deviation (residual) between all approximated values𝑚 ®𝑤 (𝑋 )
and the given labels ®𝑦, for example, mean squared error:

𝑚 ®𝑤 ( ®𝑥) =
∑︁

𝑖∈[ | ®𝑤 | ]
𝑥𝑖 ·𝑤𝑖 ≈ 𝑦, (1)

𝑙𝑋, ®𝑦 ( ®𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

𝑙 ®𝑥𝑖 ,𝑦𝑖 ( ®𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑚 ®𝑤 ( ®𝑥𝑖 ) − 𝑦𝑖 )2 . (2)

To minimise 𝑙𝑋,𝑦 ( ®𝑤), gradient descent updates the weights per
iteration by subtracting the loss function’s gradient times the learn-

ing rate 𝛾 . Batch gradient descent considers all tuples per iteration

and averages the loss:

®𝑤𝑡+1 = ®𝑤𝑡 − 𝛾∇𝑙𝑋, ®𝑦 ( ®𝑤𝑡 ), (3)

®𝑤∞ ≈ lim
𝑡→∞

®𝑤𝑡 . (4)

Smaller batch sizes, mini-batches, are mandatory when the entire

input does not fit into GPU memory and allows parallelism later

on. Therefore, we consider mini-batch gradient descent, where

we have to split our input data set 𝑋 into disjoint mini-batches

𝑋 = 𝑋0 ⊎ · · · ⊎ 𝑋𝑜 .

3.2 Machine Learning Pipeline in SQL
We argue that SQL offers all components needed for data prepro-

cessing, and recursive tables allow gradient descent to be performed.

Thus, we reimplemented the components of a machine learning

pipeline (see Figure 2) proposed by Derakhshan et. al. [11] in SQL:

• The Input Parser parses input CSV files and stores the data

in chunks using row-major format to allow batched process-

ing of mini-batch gradient descent. In SQL, this corresponds

1
https://developer.nvidia.com/cudnn

https://developer.nvidia.com/cudnn
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to a simple table scan. In Umbra, we can also use a foreign

table as input for continuous views (table taxidata).
• The Feature Extractor extracts features from data chunks,

which is a simple projection in SQL. For example, day and

hour are extracted from timestamps, and distance metrics

from given coordinates (view processed).
• The Anomaly Detector deletes tuples of a chunk on anom-

alies. An anomaly occurs when at least one attribute in a

tuple passes over or under a predefined threshold. For anom-

alies, we filter for user-defined limits in a selection (view

normalised).
• The Standard Scaler scales all attributes in the range [0, 1]
to equal each attribute’s impact on the model; this corre-

sponds again to a projection and nested subqueries to extract

the attribute’s extrema (view normalised).
• The Schedulermanages gradient descent iterations until the

weights converge. This can be either done using recursive

tables or using an operator that off-loads work to GPU.

Listing 1 shows the resulting SQL queries using a taxi data set as

exemplary input and a linear function to predict a trip’s duration

based on its day, hour, distance and bearing. In this example, we

perform 50 iterations of mini-batch gradient descent based on a

sample size of ten tuples (tablesample reservoir (10)) and a

learning rate of 0.001. In every iteration, we subtract the average

gradient from the weights, which we finally use to compute the loss.

As computing each partial derivative manually can be bothersome

and error-prone for complex loss functions, we proceed with an

operator for automatic differentiation in the next section.

create foreign table taxidata(id int , pickup_datetime date , dropoff_datetime
date , passengers float , pickup_longitude float , pickup_latitude float ,
dropoff_longitude float , dropoff_latitude float , duration float) server
stream;

copy taxidata from './ taxisample.csv' delimiter ',';
create view processed as (select hour ,day ,duration ,ACOS(SIN(plat)*SIN(dlat)+COS(

plat)*COS(dlat)*COS(dlong -plong))*6371000 distance , ATAN2(SIN(dlong -plong
)*COS(dlat),COS(plat)*SIN(dlat)-SIN(plat)*COS(dlat)*COS(dlong -plong))
*180/PI() bearing from (select avg(hour) as hour , avg(day) as day , avg(
duration) as duration , avg(plat) as plat , avg(plong) as plong , avg(dlat)
as dlat , avg(dlong) as dlong from (select cast(extractHour(
dropoff_datetime) as float) as hour ,cast(extractDay(dropoff_datetime) as
day ,duration , pickup_latitude /180*pi() plat , pickup_longitude /180*pi()
plong , dropoff_latitude /180* pi() dlat , dropoff_longitude /180*pi() as
dlong from taxidata) group by hour , day , duration , plat , plong , dlat ,
dlong));

create view normalised(hour , day , distance , bearing , duration) as (select cast(
hour as float)/( select max(hour)+1 from processed), cast(day as float)/(
select max(day) from processed), distance /( select max(distance) from
processed where distance < 1000), (bearing +360) %360/360.0 , duration /(
select max(duration) from processed) from processed where distance <
1000);

with recursive gd (id, a1, a2, a3, a4, b) as (
select 1, 1::float , 1::float , 1::float , 1::float , 1:: float UNION ALL
select id+1,

a1 -0.001* avg(2* hour*(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)),
a2 -0.001* avg(2* day*(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)),
a3 -0.001* avg(2* distance *(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)),
a4 -0.001* avg(2* bearing *(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)),
b -0.001* avg (2*(a1*hour+a2*day+a3*distance+a4*bearing+b-duration))

from gd, (select * from normalised tablesample reservoir (10))
where id <=50 group by id,a1,a2,a3,a4, b)
select id, avg(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)^2
from gd,normalised where id=51;

Listing 1: Machine learning pipeline in SQL.

3.3 Neural Networks in SQL
Expressing neural networks in SQL-92 is possible having one rela-

tion for the weights and one for the input tuples (Listing 2). The

weights relation will contain the values in normal form as a coor-

dinate list. If one relation contains all weight matrices, it will also

contain one attribute (id) to identify the matrix.

create table w(id int , i int , j int , val float); insert into w ...
create function w_ij(id int , i int , j int) returns float language 'sql' strict

as $$ select val from w where w.i=i and w.j=j and w.id=id $$;
create function sig(i float) returns float language 'sql' as $$ select 1.0/(1.0+

exp(-i));$$;
select sig(i.a*w_ij(0,1,1)+i.b*w_ij(0,2,1)),sig(i.a*w_ij(0,1,2)+i.b*w_ij(0,2,2))
from input i;

Listing 2: Neural network in SQL-92.

Expressing matrix operations in SQL-92 has the downside of

manually specifying each elementwise multiplication. For this rea-

son, Umbra provides an array data type that is similar to the one in

PostgreSQL and allows algebraic expressions as matrix operations.

In Listing 3, we first construct the weight matrices from its

relational representation and apply the sigmoid function on arrays

as a user-defined function. Hence, the forward-pass for a single

layer consists of the matrix multiplication and the sigmoid function

on arrays.

create view wm as (select id, array_agg(name) from (select id, i, array_agg(val)
as name from w group by id,i) j group by id);

create function sig (x float []) returns float [] language 'sql' as $$ select
array_agg(s) from (select sig(unnest) as s from unnest(x)) tmp; $$;

select sig(array[[a,b]]*wm.val) from input , wm where wm.id=0;

Listing 3: Neural network with an array data type.

4 DATABASE OPERATORS FOR ML
This section describes the operators in Umbra, we created to facili-

tate machine learning in SQL. Modern database systems like Umbra

generate code for processing chunks of tuples in parallel pipelines,

so we first explain code generation before presenting the operators

for automatic differentiation and gradient descent.

4.1 Code Generation
With Umbra as the integration platform, an operator follows the

concept of a code-generating database system. It achieves paral-

lelism by starting as many pipelines as threads available and ex-

pects each operator in a query plan to generate code for processing

chunks of tuples. Unary operators can process tuples within a

pipeline, whereas binary operators have to materialise at least the

result of one incoming child node first before pipelined processing

begins.

Each operator of Umbra, similar to HyPer [39], provides two

functions, produce() and consume() to generate code. On the

topmost operator of an operator tree, produce() is called, which
recursively calls the same method on its child operators. Arriving

at a leaf operator, it registers pipelines for parallel execution and

calls consume() on the parent node. Within these pipelines, the

generated code processes data inside registers without overhead.

An operator for gradient descent is a pipeline breaker, as it accesses

batches of tuples multiple times until the weights converge, whereas

an operator for automatic differentiation is part of a pipeline as it

just adds the partial derivatives per tuple.

4.2 Automatic Differentiation
As Umbra compiles arithmetic expressions to machine code as well,

it is perfectly suited for automatic differentiation (see Figure 3, Algo-

rithm 1). Similar to how an arithmetic SQL expression is compiled

during code generation, we created a function that can be used to
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Figure 2:Machine learning pipelines for database systems: (a) focuses on the components of awholemachine learning pipeline:
chunked input will be processed independently on GPUs. After every iteration, the weights (blue) are synchronised. (b) shows
the corresponding operator planwith linear regression on theNewYork taxi data set in relational algebra: a projection extracts
the features as haversine (hav) distance or bearing (bear), anomalies are deleted using predefined thresholds (denoted as limit).

generate the expression’s partial derivatives: Once a partial deriva-

tive has been compiled, its subexpressions will be cached inside an

LLVM register that can be reused to generate the remaining partial

derivatives. This accelerates the runtime during execution.

𝑓 (𝑔(𝑙, 𝑟 ))

𝑔(𝑙, 𝑟 )

𝑙 𝑟

𝜕𝑓

𝜕𝑔

𝜕𝑓

𝜕𝑟
=

𝜕𝑓

𝜕𝑔
· 𝜕𝑔
𝜕𝑟

𝜕𝑓

𝜕𝑙
=

𝜕𝑓

𝜕𝑔
· 𝜕𝑔
𝜕𝑙

Figure 3: Reverse mode automatic differentiation: First, the
function 𝑓 (𝑔(𝑙, 𝑟 )) gets evaluated, then each partial deriva-
tive is computed in reverse order. Each partial derivative is
the product of the parent one (or 1 for the top most node)
and the derived function with its original arguments as in-
put. Each arrow represents one cached computation.

To specify the expression, we integrated lambda functions as

introduced in HyPer [50, 52] into Umbra. Lambda functions are

used to inject user-defined SQL expressions into table operators.

They consist of arguments to define the column names (but whose

scope is operator specific) and the expression itself. All provided

operations on SQL types, even on arrays, are allowed:

𝜆(< name1 >, < name2 >, ...) (< SQL expression >) .

select * from umbra.derivation(TABLE(select 2 x, 3 y, 10 a, 10 b), lambda (x)((x
.a * x.x + x.b - x.y)^2));

-- x y a b d_x d_y d_a d_b
-- 2 3 10 10 540 54 108 54

Listing 4: Automatic differentiation within SQL.

Algorithm 1 Automatic Differentiation

1: function derive(𝑧, 𝑧′)
2: if 𝑧 = 𝑥 + 𝑦 or 𝑧 = 𝑥 − 𝑦 then derive(𝑥 ,𝑧′) derive(𝑦,𝑧′)
3: else if 𝑧 = 𝑥 · 𝑦 then derive(𝑥 ,𝑧′ · 𝑦) derive(𝑦,𝑧′ · 𝑥 )
4: else if 𝑧 = 𝑥

𝑦 then derive(𝑥 ,𝑧
′
𝑦 ) derive(𝑦,

−𝑧′ ·𝑥
𝑦2 )

5: else if 𝑧 = 𝑥𝑦 then
6: derive(𝑥 ,𝑧′ · 𝑦 · 𝑥𝑦−1) derive(𝑦,𝑧′ · 𝑥𝑦𝑙𝑛(𝑥))
7: else if 𝑧 = 𝑙𝑜𝑔𝑦 (𝑥) then
8: derive(𝑥 , 𝑧′

𝑥 ·𝑙𝑛 (𝑦) ) derive(𝑦,
−𝑧′ ·𝑙𝑛 (𝑥)
𝑦 ·𝑙𝑛2 (𝑦) )

9: else if 𝑧 = 𝑠𝑖𝑛(𝑥) then derive(𝑥 ,𝑧′ · 𝑐𝑜𝑠 (𝑥))
10: else if 𝑧 = 𝑐𝑜𝑠 (𝑥) then derive(𝑥 ,−𝑧′ · 𝑠𝑖𝑛(𝑥))
11: else if 𝑧 = 𝑒𝑥 then derive(𝑥 ,𝑧′ · 𝑒𝑥 )
12: else if 𝑖𝑠𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑧) then 𝜕

𝜕𝑧 ←
𝜕
𝜕𝑧 + 𝑧

′

We expose automatic differentiation as a unary table operator called

derivation that derives an SQL expression with respect to every

affected column reference and adds its value as a further column to

the tuple (see Listing 4). We can use the operator within a recursive

table to perform gradient descent (see Listing 5). This eliminates

the need to derive complex functions manually and accelerates

the computation with a rising number of attributes, as each sub-

expression is evaluated only once.

create table data (x float , y float); insert into data ...
with recursive gd (id, a, b) as (select 1,1::float ,1:: float UNION ALL
select id+1, a -0.05* avg (2*x*(a*x+b-y)), b -0.05* avg (2*(a*x+b-y))
from gd, data where id <5 group by id,a,b) select * from gd order by id;

with recursive gd (id, a, b) as (select 1,1::float ,1:: float UNION ALL
select id+1, a -0.05* avg(d_a), b -0.05* avg(d_b)
from umbra.derivation(TABLE (select id,a,b,x,y from gd,data where id <5),
lambda (x) ((x.a * x.x + x.b - x.y)^2)) group by id,a,b)

select * from gd order by id;

Listing 5: Gradient descent using recursive tables: manually
derived and using automatic differentiation.
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Figure 4: Operator plan inside of a database system with
one operator for training and a query for predicting la-
bels. Dashed lines illustrate code generation, solid lines com-
piled code. The gradient descent operator materialises in-
put from parallel pipelines within local threads, performs
iterations and returns the optimal weights.

4.3 Gradient Descent Operator
Our operator for gradient descent materialises incoming tuples,

performs gradient descent and produces the optimal weights for

labelling unlabelled data. The proposed operator is considered a

pipeline breaker as it needs to materialise all input tuples before-

hand to perform multiple training iterations. This section focuses

on the operator characteristics, the design with its input queries and

the actual implementation, with linear regression as an example.

4.3.1 Operator Design. We design an operator for gradient descent,

which requires one input for the training, one for the initial weights

and optionally one for the validation set, and returns the optimal

weights. If no input is given as validation set, a fraction of the train-

ing set will be used for validation. The user can set the parameters

for the batch size, the number of iterations and the learning rate as

arguments inside the operator call (see Listing 6). Figure 4 shows

gradient descent inside of an operator tree: it expects the training

data set as parallel input pipelines and returns the optimal weights.

These might serve as input for a query that labels a test data set. In

addition, SQL lambda functions, which allow users to inject arbi-

trary code into operators, specify the loss function to be used for

gradient descent. Gradient descent benefits from generated code

as it allows user-defined model functions to be derived at compile

time to compute its gradient without impairing query runtime.

select * from umbra.gd(TABLE (select * from data), TABLE (select 10:: float a,
10:: float b), lambda (x,y) ((y.a * x.x + y.b - x.y)^2), 1, 0.05, 10);

Listing 6: Gradient descent as operator.

This implies three parts for the integration of gradient descent:

consuming all input tuples in parallel pipelines, performing gradient

descent with a call to the GPU kernels and producing the weights

in a new pipeline. This first separation is necessary, as we need

to know the number of tuples in advance to determine when one

training epoch ends. Specific to Umbra, we cannot assume the same

number of available threads for training as for the parallel pipelines;

we have to merge all materialised tuples before we start new parallel

threads for the training iterations afterwards.

4.3.2 Implementation. The generated code runs gradient descent

iterations in parallel. Devoted to batched processing on GPUs, we

deduce a parallel mini-batch gradient descent operator. First, it ma-

terialises the input tuples thread locally (generated by consume())
and merges them globally. Afterwards, each thread picks one mini-

batch and maintains a local copy of the global weights.

Algorithm 2 depicts the training procedure without GPU support.

Again, for simplicity, the validation phase with the corresponding

validation input is omitted. Inside of the two loops (lines 5-9), one is

unrolled during compile time in order to dispatch tasks to parallel

threads, and one executed at runtime to manage gradient descent

iterations, we can later off-load work to GPUs. Inside such a code

fragment, we start as many CPU threads as GPU units are available

with whom one CPU thread is associated.

Algorithm 2 Operator for mini-batch gradient descent.

1: function produce

2: computeGradient(expression)

3: produce(inputPipeline)

4: generate(mergeTuples)

5: generate(while !𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑)
6: for 𝑙 ∈localthreads do
7: generate(l.updateWeights)

8: generate(𝑤 ← ∑
𝑙 ∈𝑙𝑜𝑐𝑎𝑙𝑡ℎ𝑟𝑒𝑎𝑑𝑠

𝑙 .𝑤
|𝑙𝑜𝑐𝑎𝑙𝑡ℎ𝑟𝑒𝑎𝑑𝑠 | )

9: generate(whileEnd)

10: consume(parent,w)

11: function updateWeights

12: generate(𝑤 ← 𝑤 − 1
𝑛

∑
𝑖∈[𝑛] ∇𝑙𝑤 ( ®𝑥𝑖 , 𝑦𝑖 ))

13: function consume

14: generate(𝑙𝑜𝑐𝑎𝑙𝑡ℎ𝑟𝑒𝑎𝑑.𝑠𝑡𝑜𝑟𝑒 ( ®𝑥,𝑦))

5 MULTI-GPU GRADIENT DESCENT
This section explains our CUDA kernels for linear regression and

neural networks, which one CPU worker thread starts once per

GPU. We describe blocking and non-blocking algorithms so as

not not to hinder faster GPUs from continuing their computation

while waiting for the slower ones to finish. To synchronise multiple

workers, we either average the gradient after each iteration or

maintain local models as proposed by Crossbow [25]. We adapt this

synchronisation technique to maximise the throughput of a single

GPU aswell. As a novelty, we implement learners at hardware level—

each associated to one CUDA block—to maximise the throughput

on a single GPU. Finally, we generate the kernels directly with

LLVM to support lambda functions for model specification.

5.1 Kernel Implementations
Developing code for NVIDIA GPUs requires another programming

paradigm, as computation is vectorised to parallel threads that per-

form the same instructions simultaneously. Each GPU device owns

one global memory (device memory) and an L2 cache. Core com-

ponents are streaming multiprocessors with an attached shared

memory (see Figure 5) to execute specialised programs for CUDA

devices (kernels). In these kernels, every thread receives a unique

identifier, which is used to determine the data to process. 32 threads



SSDBM 2021, July 6–7, 2021, Tampa, FL, USA M. Schüle et. al.

Shared Memory
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...
Shared Memory
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64 Cuda Cores

Number of Streaming Multiprocessors (SM): 28 68 80

L2-Cache 2.816 MB 5.5 MB 6 MB
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Main Memory

PCIe 3.0 x16 12 GB/s

Figure 5: Simplified GPU architecture for NVIDIA GeForce
GTX 1080 Ti (orange), RTX 2080 Ti (blue) and Tesla V100
(green): Each GPU transfers data via PCIe x16 from main-
memory to its global/device memory. Multiple CUDA cores
sharing the L1 cache (shared memory) are grouped to one
streaming multiprocessor, its number is GPU specific. In-
between lies the L2 cache.

in a bundle are called a warp, multiple warps form a block and

threads inside a block can communicate through shared memory

and interfere with each other. To interfere with other threads, shuf-

fling can be used to share or broadcast values with one or more

threads within a warp.

To off-load gradient descent iterations to NVIDIA GPUs, we

generate specialised kernels. In detail, we have to map batches

to blocks; we can vary the number of threads per block and ex-

plicitly cache values in shared memory. We describe our kernel

implementations for gradient descent with linear regression and a

fully-connected neural network, and we will introduce independent

learners at block-size granularity.

5.1.1 Linear Regression. As linear regression is not a compute-

bound but a memory-intensive application, we initially transfer as

much training data into device memory as possible. If data exceeds

the memory and more GPUs are available for training, we will

partition the data proportionally to multiple devices. Otherwise,

we reload the mini-batches on demand.

Each thread handles one input tuple and stores the resulting gra-

dient after each iteration in shared memory. Each iteration utilises

all available GPU threads, wherefore the size of a mini-batch must

be greater or equal to the number of threads per block, to ensure

that compute resources are not wasted. When the batch size is

larger than a block, each thread processes multiple tuples and main-

tains a thread-local intermediate result, which does not require

any synchronisation with other threads. After a mini-batch is pro-

cessed, shuffling operations summarise the gradient to compute

the average for updating the weights (tree reduction).

5.1.2 Neural Network. Our initial approach was to adapt the gra-

dient descent kernel for linear regression to train a neural network

Device Memory

®𝑥1, ®𝑥2, ®𝑥3, . . . , ®𝑥30, ®𝑥31, ®𝑥32
®𝑥33, ®𝑥34, ®𝑥35, . . . , ®𝑥62, ®𝑥63, ®𝑥64

Shared Memory

®𝑤, ®𝑤𝑙𝑜𝑐𝑎𝑙,0, ®𝑐0, ®𝑤𝑙𝑜𝑐𝑎𝑙,1, ®𝑐1,. . . , ®𝑤𝑙𝑜𝑐𝑎𝑙,𝑁 , ®𝑐𝑁
Block 0 Block 1 Block N

. . .
.
.
.

.

.

.
.
.
.

Figure 6:Multiple learners per GPU: Each block corresponds
to one learner, each learner maintains local weights ®𝑤𝑙𝑜𝑐𝑎𝑙

and the difference ®𝑐𝑙𝑜𝑐𝑎𝑙 to the global weights ®𝑤 . Each input
tuple is stored in device memory and is scheduled to one
GPU thread.

and to spread each tuple of a batch to one thread. As training neural

networks is based on matrix operations, we rely on libraries for ba-

sic linear algebra subprograms for CUDA devices (cuBLAS
2
), which

provide highly optimised implementations. Our implementation

uses the cuBLAS API for all operations on matrices or vectors. For

example, the forward pass in a neural network uses matrix-vector

multiplications (cublasDger()) for a single input tuple and, when
a mini-batch is processed, matrix-matrix multiplications respective-

ly (cublasDgemm()). To apply and derive the activation function,

handwritten kernels are used that vectorise over the number of

attributes. These kernels plus the library calls plus handwritten

code build the foundation for parallelising to multiple GPUs.

5.1.3 Multiple Learners per GPU. To utilise all GPU threads even

with small batch sizes, we implement multiple workers on a single

GPU. These are called learners [25] and ensure a higher through-

put. Crossbow offers a coarse-grained approach as every learner

launches multiple kernels, which limits its overall number. By con-

trast, our lightweight approach launches only one instance of a

fine-grained kernel for one entire GPU. This enables full utilisation

of the GPU as the number of learners could be much higher.

In our implementation (see Figure 6), each learner corresponds

to one GPU block. We can set the block size adaptively, by which

the number of learners results. Consequently, one learner works

on batch sizes of at least one warp, that is the minimum block size

with 32 threads, or multiple warps. Hence, the most learners that

are allowed is the number of warps that can be processed per GPU.

After each learner has finished its assigned batches, the first block

synchronises with the other ones to update the global weights. But

for multi GPU processing as well as for multiple learners per GPU,

we need to synchronise each unit.

5.2 Synchronisation Methods
As we intend to run gradient descent in parallel on heterogeneous

hardware, we have to synchronise parallel gradient descent itera-

tions. Based on a single-threaded naive gradient descent implemen-

tation, we propose novel synchronisation methods to compare their

performance to existing ones and benchmark different hardware.

2
https://docs.nvidia.com/cuda/cublas

https://docs.nvidia.com/cuda/cublas
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Figure 7: Scheduling mini-batches on four different workers: (a) shows worker threads whose weights are synchronised glob-
ally after each iteration and whose averaged gradient is used to update the global weights 𝑤 ; workers are idle when others
have still not finished. (b) shows worker threads that update weights globally without any synchronisation; each worker is
responsible for fetching the next batch on its own. To overcome race conditions, the worker threads in (c) maintain their local
model that is synchronised lazily when every worker is done with at least one iteration.

The naive implementation uses a constant fraction of its input

data for validation and the rest for training. The training data set

is split into fixed-sized mini-batches. After a specified number of

mini-batches but no later than after one epoch when the whole

training set has been processed once, the loss function is evaluated

on the validation set and the current weights. The minimal loss is

updated and the next epoch starts. We terminate when the loss falls

below a threshold 𝑙𝑠𝑡𝑜𝑝 or a maximum number of processed batches

𝑐𝑡𝑟𝑚𝑎𝑥 . Also, we terminate if the loss has not changed within the

last 10 iterations.

Based on the naive implementation, this section presents three

parallelisation techniques, a blocking but synchronised one and

two using worker threads with multiple local models or only one

global one.

5.2.1 Synchronised Iterations. At the beginning of each synchro-

nised iteration, we propagate the same weights with an individual

mini-batch to the processing unit. After running gradient descent,

the main worker collects the calculated gradients and takes their

average to update the weights.

Algorithm 3 shows this gradient descent function, taking as

input the data set 𝑋 , labels ®𝑦, a learning rate 𝛾 , the batch size 𝑛

and the hyper-parameter 𝑐𝑡𝑟𝑚𝑎𝑥 . In each iteration, multiple par-

allel workers pick a mini-batch and return the locally computed

gradient. Afterwards, the weights are updated. For simplicity, the

validation pass is not displayed: When the calculated loss has im-

proved, the minimal weights together with the minimal loss are set

and terminate the computation when a minimal loss 𝑙𝑚𝑖𝑛 has been

reached.

When synchronising a global model after each iteration, workers

who may have finished their mini-batches earlier, are idle and

waiting for input (see Figure 7a). To maximise the throughput,

independent workers have to fetch their mini-batches on their

own. These independent workers either require local weights to be

synchronised frequently (see Figure 7c) or update global weights

centrally (see Figure 7b).

5.2.2 Worker Threads with Global Updates (Bulk Synchronous Par-
allel). In Algorithm 4, we see worker threads that fetch the next

Algorithm 3 Synchronised.

1: function GD(𝑋 ,𝑦,𝛾 , 𝑐𝑡𝑟𝑚𝑎𝑥 , 𝑛)

2: ®𝑤 ← (0, ..., 0)
3: 𝑐𝑡𝑟 ← 0
4: while 𝑐𝑡𝑟 < 𝑐𝑡𝑟𝑚𝑎𝑥 do
5: for 𝑡 ∈ [#𝑤𝑜𝑟𝑘𝑒𝑟𝑠] do
6: 𝑏𝑎𝑡𝑐ℎ ← atomic_fetch_add(ctr,1)

7: (𝑋 ′, ®𝑦′) ← getBatch(batch,X,y,n)

8: ®𝑔𝑡 ← 𝛾∇𝑙 ®𝑤 (𝑋 ′, ®𝑦′)

 i
n
p
a
r
a
l
l
e
l

9: for 𝑡 ∈ [#𝑤𝑜𝑟𝑘𝑒𝑟𝑠] do
10: ®𝑤 ← ®𝑤 − 𝛾 ®𝑔𝑡

batch independently and update a global model. Each worker incre-

ments a global atomic counter as a batch identifier and selects the

corresponding batch consisting of the attributes and the labels. The

current weights are used to compute the gradient; afterwards, the

weights are updated globally. Besides, the first thread is responsible

for managing the minimal weights. Assuming a low learning rate,

we suppose the weights are changing marginally and we omit locks

similar to HogWild [42]. Otherwise, the critical section—gradient

calculation and weights update (line 5)—has to be locked, which

would result in a single-threaded process as in Algorithm 3.

Algorithm 4 Worker threads (global updates).

1: function run(𝑋 , ®𝑦, ®𝑤 , 𝑐𝑡𝑟 , 𝑐𝑡𝑟𝑚𝑎𝑥 , 𝛾 )

2: while 𝑐𝑡𝑟 < 𝑐𝑡𝑟𝑚𝑎𝑥 do
3: 𝑏𝑎𝑡𝑐ℎ ← atomic_fetch_add(ctr,1)

4: (𝑋 ′, ®𝑦′) ← getBatch(batch,X,y,n)

5: ®𝑤 ← ®𝑤 − 𝛾∇𝑙 ®𝑤 (𝑋 ′, ®𝑦′)
}
critical section

6: function GD(𝑋 ,𝑦,𝛾 , 𝑐𝑡𝑟𝑚𝑎𝑥 , 𝑛)

7: ®𝑤 ← (0, ..., 0)
8: 𝑐𝑡𝑟 ← 0
9: for 𝑡 ∈ [#𝑤𝑜𝑟𝑘𝑒𝑟𝑠] do
10: run(𝑋 , ®𝑦, ®𝑤 , 𝑐𝑡𝑟 , 𝑐𝑡𝑟𝑚𝑎𝑥 , 𝛾 )

}
in parallel
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5.2.3 Worker Threads with Local Models (Model Average). To over-

come race conditions when updating the weights, we adapt local

models known from Crossbow [25] to work with worker threads.

Crossbow adjusts the number of parallel so-called learners adap-

tively to fully utilise the throughput on different GPUs. Each learner

maintains its local weights and the difference from the global

weights. A global vector variable for every learner 𝑡 called correc-

tions ®𝑐𝑡 stores this difference, divided by the number of all learners.

In each iteration, the weights are updated locally and these cor-

rections are subtracted. After each iteration, the corrections of all

learners are summed up to form the global weights.

Algorithm 5 shows its adaption for worker threads. The main

thread manages the update of the global model (line 10) that is the

summation of all corrections. The critical section now consists of

the computation of the corrections (lines 6-8) only, so the gradient

can be computed on multiple units in parallel.

Algorithm 5Worker threads (local models).

1: function run(𝑋 , ®𝑦, ®𝑤 , 𝑐𝑡𝑟 , 𝑐𝑡𝑟𝑚𝑎𝑥 , 𝛾 )

2: while 𝑐𝑡𝑟 < 𝑐𝑡𝑟𝑚𝑎𝑥 do
3: 𝑏𝑎𝑡𝑐ℎ ← atomic_fetch_add(ctr,1)

4: (𝑋 ′, ®𝑦′) ← getBatch(batch,X,y,n)

5: ®𝑔← 𝛾∇𝑙 ®𝑤𝑙𝑜𝑐𝑎𝑙
(𝑋 ′, ®𝑦′)

6: ®𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 ← ®𝑤𝑙𝑜𝑐𝑎𝑙− ®𝑤
𝑡

7: ®𝑤𝑙𝑜𝑐𝑎𝑙 ← ®𝑤𝑙𝑜𝑐𝑎𝑙 − 𝛾 ®𝑔 − ®𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑
8: ®𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 ← ®𝑤𝑙𝑜𝑐𝑎𝑙− ®𝑤

𝑡
9: if 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑 = 0 then
10: ®𝑤 ← ®𝑤 +∑𝑡 ∈[#𝑤𝑜𝑟𝑘𝑒𝑟𝑠 ] ®𝑐𝑡


critical section

11: function GD(𝑋 ,𝑦,𝛾 , 𝑐𝑡𝑟𝑚𝑎𝑥 , 𝑛)

12: ®𝑤 ← (0, ..., 0)
13: 𝑐𝑡𝑟 ← 0
14: for 𝑡 ∈ [#𝑤𝑜𝑟𝑘𝑒𝑟𝑠] do
15: run(𝑋 , ®𝑦, ®𝑤 , 𝑐𝑡𝑟 , 𝑐𝑡𝑟𝑚𝑎𝑥 , 𝛾 )

}
in parallel

5.3 JIT Compiling to GPU
The normal way to use the CUDA interface is to write the CUDA

code, which is C++ with additional language elements to support

kernel declarations. The compiled CUDA code can be invoked from

the host as a special function invocation through the CUDA API.

With a just-in-time architecture, which compiles the GPU code,

one can keep the advantages of modularisation but also allow for

more optimisations to take place during compile time. Similar to

gradient computation on the CPU, the lambda function can be

passed directly to customised model-specific kernels as it generates

the gradient of a user-defined model function during compile time

without impairing query time.

6 EVALUATION
We tested on servers with four Intel Xeon Gold 5120 processors,

each with 14 CPUs (2.20 GHz) running Ubuntu 20.04.01 LTS with

256GiB RAM. Each server is connected to either four GPUs (NVIDIA

GeForce GTX 1080 Ti/RTX 2080 Ti) or one NVIDIA Tesla V100. We

benchmark linear regression with synthetic data and the New York

taxi data set, and a feed-forward neural network with a single hid-

den layer for image recognition (see Table 1). We take 2.65 GiB of

the New York taxi data set
3
(January 2015), on which we perform

linear regression to forecast the taxi trip duration from the trip’s

distance and bearing, the day and the hour of the ride’s beginning

(four attributes).

6.1 Automatic Differentiation
Using synthetic data, we first compare three CPU-only approaches

to compute batch gradient descent (the batch size corresponds to

the number of tuples) on a linear model within SQL: Recursive

tables with either manually or automatically derived gradients, and

a dedicated (single-threaded) operator. Figure 8 shows the compi-

lation and execution time depending on the number of involved

attributes. As we see, automatically deriving the partial derivatives

speeds up compilation time, as fewer expressions have to be com-

piled, as well as execution time, as subexpressions are cached in

registers for reuse. This performance benefit is also visible when

the batch size, the number of iterations or the number of threads is

varied (Figure 9). Furthermore, we observe the approach using re-

cursive tables computes aggregations in parallel, which accelerates

computation on many input tuples with each additional thread.
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Figure 8: Compilation and execution time with increasing
number of attributes (100 iterations, 10, 000/100, 000 tuples).
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Figure 9: Execution time (64 attributes)with increasing num-
ber of tuples (100 iterations, 8 threads), iterations (100, 000
tuples, 8 threads) or threads (100 iterations, 100, 000 tuples).

6.2 Linear Regression
We measure the performance and the quality of the different paral-

lelisation models on the CPU as well as the GPU according to the

following metrics:

3
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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(1) Throughput measures the size of processed tuples per time.

It includes tuples used for training as well as for validation.

(2) Time-to-loss, similarly to time-to-accuracy [10] for classifica-

tion problems, measures the minimal loss on the validation

data set depending on the computation time.

(3) Tuples-to-loss describes howmany tuples are needed to reach

a certain minimal loss. In comparison to time-to-loss, it is ag-
nostic to the hardware throughput and measures the quality

of parallelisation and synchronisation methods.

#attr. #training #validation

New York Taxi 4 + 1 61,664,460 15,416,115

Synthetic 99 + 1 10 10

MNIST 784 + 1 60,000 10,000

Fashion-MNIST 784 + 1 60,000 10,000

Table 1: Training and validation data sets used with linear
regression and a neural network respectively.

We perform gradient descent with a constant learning rate of 0.5
to gain the optimal weights. After a predefined validation frequency,

every 3,000 batches, the current loss is computed on a constant

validation set of 20 % the size of the original one. We vary the

hyper-parameters of our implementation, i.e., the batch size and

the number of workers. A thread records the current state every

second to gather loss metrics.

6.2.1 Throughput vs. Statistical Efficiency. To measure the through-

put for linear regression on different hardware, we consider batch

sizes of up to 100 MiB. We compare the performance of our ker-

nels to that when stochastic gradient descent of the TensorFlow

(version 1.15.0) library is called (see Figure 10). The higher the

batch size, the better the throughput when running gradient de-

scent on GPUs as all concurrent threads can be utilised. Hardware-

dependent, the maximal throughput converges to either 150 GiB/s

(GeForce GTX 1080 Ti), 250 GiB/s (GeForce RTX 2080 Ti) or more

than 300 GiB/s (Tesla V100). As developed for batched process-

ing, our dedicated kernels (see Figure 10a) can exploit available

hardware more effectively than the Python implementation (see Fig-

ure 10b). As the latter calls stochastic gradient descent, this excels

on better hardware only when a larger model has to be trained.
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Figure 10: Throughput of (a) the dedicated kernels and (b)
using the TensorFlow library.

Nevertheless, training with large batch sizes does not imply sta-

tistical efficiency in terms of the volume of processed data that is
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Figure 11: Statistical efficiency for linear regression: (a) vol-
ume of processed data needed to converge and (b) minimal
reachable loss depending on the batch size.

needed for convergence (see Figure 11a) and the lowest reachable

minimal loss (see Figure 11b). For that reason, to allow the high-

est throughput even for small batch sizes, we implement multiple

learners per GPU.

6.2.2 Multiple Learners per GPU. As the GPU is only fully utilised

when the number of concurrently processed tuples is greater or

equal to the number of parallel GPU threads, we benchmark mul-

tiple learners per GPU. As each learner corresponds to one GPU

block consisting of a multiple of 32 threads, our implementation

allows the highest throughput for every batch size, as a multiple

of the block size. Therefore, we vary the number of threads per

block (equal to a learner) between 32 and 1,024 and measure the

throughput dependent on the batch size in multiples of 32 threads.
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Figure 12: Throughput with multiple learners per GPU: A
smaller number of threads per learner allows themaximum
throughput even for small batch sizes, when small batches
are processed in parallel.

The observation in Figure 12 corresponds to the expectation that

a small number of threads per learner allows a higher throughput

for small batch sizes. When the batch size is equal to a multiple



SSDBM 2021, July 6–7, 2021, Tampa, FL, USA M. Schüle et. al.

of the chosen number of threads, the throughput reaches a local

maximum. Otherwise, the GPU is underutilised. These local maxima

are visible as spikes in all curves except for 32 threads per block, as

we increase the batch size by 32 tuples. Nevertheless, on all devices,

the throughput soon converges at the possible maximum, which

shows the efficiency of learners in the granularity of GPU warps.

6.2.3 Scalability. When running gradient descent in parallel, we

benchmark the four implementations for synchronising weights: no

synchronisation with global updates (global updates), maintaining

local models either with locking of the critical section (local models
(locks)) or without locking (local models (dirty)), or synchronised
updates that block until every worker has finished (synchronised
(blocking)). We ran the experiments on the CPU as well as the GPU.

When parallelising on the CPU, each additional thread allows

a linear speed-up when no synchronisation takes place (see Fig-

ure 13a). Maintaining local models costs additional computation

time, which results in a lower throughput. Obviously, locks slow

down the speed up, and blocking threads cause underutilisation.
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Figure 13: Scale-up for linear regression on (a) multiple
CPUs, (b) multiple NVIDIA GeForce GTX 1080 Ti or (c) mul-
tiple NVIDIA GeForce GTX 2080 Ti.

Whereas parallelising for GPUs behaves differently (see Fig-

ure 13b/c): the larger the batch size, the higher the scale-up. This

is obvious, as less synchronisation is necessary for larger batch

sizes and the parallel workers can compute the gradients inde-

pendently. Also on GPUs, the implementation without any syn-

chronisation and global updates scales best, even though not as

linearly as on CPUs. In all implementations, one additional GPU

allows a noticeably higher throughput. Maintaining local models

requires inter-GPU communication of the local corrections to form

the global weights, which decreases the performance significantly

with the third additional device. To minimise this effect, the weight

computation could be split up hierarchically.

6.3 Neural Network
To benchmark the feed-forward neural network, we perform image

classification using the MNIST and Fashion-MNIST [61] data set.

We train the neural network with one hidden layer of size 200

to recognise a written digit given as a single tuple representing

an image with 784 pixels. We take 0.025 as learning rate, perform

a validation pass every epoch and measure the throughput and

the time to reach a certain accuracy (with the loss defined as the

number of incorrectly classified tuples).

6.3.1 Throughput vs. Statistical Efficiency. Even though stochas-

tic gradient descent using Keras (version 2.2.4) with TensorFlow

allows a higher bandwidth than for linear regression due to more

attributes per tuple (see Figure 14b), our implementations call the

cuBLAS library process tuples batch-wise, which results in a higher

bandwidth. As training a neural network is compute-bound involv-

ing multiple matrix multiplications, the throughput is significantly

lower than for linear regression (see Figure 14a), but allows a higher

throughput, the larger the batch size.
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Figure 14: Throughput of the implementation (a) using
cuBLAS and (b) using Keras when training a neural network
with the MNIST data set.

As is the case for linear regression, training models with small

batch sizes results in a higher accuracy (see Figure 15b). This once

again makes the case for multiple learners per single GPU. Nev-

ertheless, the larger the chosen batch size is, the faster training

iterations converge (see Figure 15a).

6.3.2 Scalability. The scalability of parallel workers computing

backpropagation resembles the scalability for training linear re-

gression on GPUs: one additional worker increases the throughput,

for any further workers, the inter-GPU communication decreases

the runtime (see Figure 16). For small batch sizes, training on two

GPU devices has the best results, while for larger batch sizes, every

additional device allows a higher throughput.
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Figure 15: Statistical efficiency for the neural network:
(a) volume of processed data needed to converge and (b)min-
imal reachable loss dependending on the batch size.
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Figure 16: Scale-up for training a neural network (with the
MNIST data set).

6.3.3 Time/Tuples-to-loss. Regarding the time to reach a certain

accuracy (see Figure 17), all implementations perform similarly

when running on a single worker. As the MNIST data set converges

fast, adding a GPU device for computation has no significant impact.

Whereas the Fashion-MNIST data set converges slower, the higher

throughput when training with an additional worker results in the

minimal loss being reached faster.We trainwith a small batch size as

it allows faster convergence. Hereby, a scale-up is only measurable

when training with up to two devices.

6.4 End-to-End Analysis
Figure 18 compares the time needed to train one epoch (New York

taxi data: 13 · 106 tuples) within a complete machine learning

pipeline in Python using Keras to a corresponding operator tree

within the database system Umbra. The pipeline consists of data

loading from CSV, feature extraction and normalisation either with

NumPy or SQL-92 queries, and training. We observe that much time

#GPU = 1 #GPU = 2 #GPU = 3

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0.06

0.09

0.12

Time [s]

L
o
ss

global updates local models (dirty) local models (locks) synchronised (blocking)

(a) Time-to-loss: MNIST data set
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(b) Time-to-loss: Fashion-MNIST data set
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Figure 17: Time-to-loss when training the neural network
for the (a) MNIST and (b) Fashion-MNIST data set with a
batch size of 5 tuples (NVIDIA GeForce GTX 2080 Ti). For
Fashion-MNIST, also tuples-to-time (c) is provided.

is spent on data loading and preprocessing. These tasks are either

no longer required if the data is already stored inside the database

system, or can easily be processed in parallel pipelines. Further-

more, gradient descent using recursive tables showed comparable

performance to library functions used, which is still outperformed

by our operator that off-loads training to GPU.
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Figure 18: End-to-end analysis of a machine learning
pipeline: linear regression (NY taxi, 64 tuples per batch).
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7 CONCLUSION
This paper has created an in-database machine learning pipeline

expressed in pure SQL based on sampling, continuous views and

recursive tables. To facilitate gradient descent, we proposed an op-

erator for automatic differentiation and one for gradient descent to

off-load training to GPU units. Therefore, we have implemented

training algorithms as GPU kernels and fine-tuned learners at hard-

ware level to increase the learning throughput. These kernels were

integrated inside the code-generating database system Umbra. In

comparison to handwritten derivatives, automatic differentiation

as a database operator accelerated both the compile time and the

execution time by the number of cached expressions. Furthermore,

our evaluation benchmarked GPU kernels on different hardware, as

well as parallelisation techniques with multiple GPUs. The evalua-

tion has shown that GPUs traditionally excel the bigger the chosen

batch sizes, which was only worthwhile when a slow-converging

model was being trained. In addition, larger batch sizes interfered

with statistical efficiency. For that reason, our fine-tuned learners

at hardware level allowed the highest possible throughput for small

batch sizes equal to a multiple of a GPU warp, so at least 32 threads.

Our synchronisation techniques scaled up learning with every ad-

ditional worker, even though this was not as linear for multiple

GPU devices as for parallel CPU threads. Finally, our end-to-end

machine learning pipeline in SQL showed comparable performance

to traditional machine learning frameworks.
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