
Freedom for the SQL-Lambda
Just-in-Time-Compiling User-Injected Functions in PostgreSQL

Maximilian E. Schüle
m.schuele@tum.de

Technical University of Munich

Jakob Huber
jakob.huber@tum.de

Technical University of Munich

Alfons Kemper
kemper@in.tum.de

Technical University of Munich

Thomas Neumann
neumann@in.tum.de

Technical University of Munich

ABSTRACT
As part of the code-generating database system HyPer, SQL lambda
functions allow user-defined metrics to be injected into data min-
ing operators during compile time. Since version 11, PostgreSQL
has supported just-in-time compilation with LLVM for expression
evaluation. This enables the concept of SQL lambda functions to be
transferred to this open-source database system.

In this study, we extend PostgreSQL by adding two subquery
types for lambda expressions that either pre-materialise the result
or return a cursor to request tuples. We demonstrate the usage of
these subquery types in conjunction with dedicated table functions
for data mining algorithms such as PageRank, k-Means clustering
and labelling. Furthermore, we allow four levels of optimisation for
query execution, ranging from interpreted function calls to just-in-
time-compiled execution. The latter—with some adjustments to the
PostgreSQL’s execution engine—transforms our lambda functions
into real user-injected code.

In our evaluation with the LDBC social network benchmark for
PageRank and the Chicago taxi data set for clustering, optimised
lambda functions achieved comparable performance to hard-coded
implementations and HyPer’s data mining algorithms.

CCS CONCEPTS
• Theory of computation → Lambda calculus; • Information
systems→ Structured Query Language; Main memory engines;
Clustering;Query optimization;DBMS engine architectures;
• Software and its engineering→ Just-in-time compilers.

ACM Reference Format:
Maximilian E. Schüle, Jakob Huber, Alfons Kemper, and Thomas Neumann.
2020. Freedom for the SQL-Lambda: Just-in-Time-Compiling User-Injected
Functions in PostgreSQL. In 32nd International Conference on Scientific
and Statistical Database Management (SSDBM 2020), July 7–9, 2020, Vienna,
Austria.ACM, NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3400903.
3400915

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM 2020, July 7–9, 2020, Vienna, Austria
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8814-6/20/07. . . $15.00
https://doi.org/10.1145/3400903.3400915

Operator

Left Pipeline Right Pipeline
𝜆

LLVM IR code

Operator

𝜆

Figure 1: Operator tree with a lambda expression: code gen-
eration injects the lambda expression.

1 INTRODUCTION
Shifting computations to database systems is one of the main chal-
lenges that research on database systems is attempting to deal
with [4, 11]. To shift the boundary between database systems and
dedicated tools [5, 22], extensions such as MADlib [14] enable
in-database analytics with dedicated table operators inside of rela-
tional database systems, but they still lack support for user-defined
customisation.

For this reason, the main-memory database system HyPer [15]
is equipped with lambda expressions for specifying metrics within
data mining operators such as PageRank or k-Means. They al-
low user-defined distance metrics or node specification to be pre-
compiled and injected into otherwise inflexible operators (see Fig-
ure 1). This is possible because HyPer generates code using the
LLVM (low-level virtual machine) compiler backend. As research
has until now been focused on HyPer, the publication of lambda
functions has been focused solely on the specific case of a modern
main-memory database system, while the corresponding source
code is restricted.

To overcome these limitations, this paper shows how SQL lambda
functions can be adapted to a conventional disk-based database
system. In PostgreSQL, we extended the grammar to allow lambda
expressions and subqueries as the table function’s arguments. Ta-
ble functions request tuples from subqueries or pre-materialise
their results. In a similar way to code generation when evaluating
expressions, we seamlessly injected lambda expressions into the
table function’s code. The specific contributions of this study are
as follows:

• an extension of PostgreSQL’s semantic analysis to support
lambda functions as table function arguments,

• two different subquery types, a materialised table and an
operator plan, either of which can be used inside of table
functions,

1

https://doi.org/10.1145/3400903.3400915
https://doi.org/10.1145/3400903.3400915
https://doi.org/10.1145/3400903.3400915

SSDBM 2020, July 7–9, 2020, Vienna, Austria M. Schüle, J. Huber, A. Kemper, T. Neumann

• a modification of PostgreSQL’s just-in-time compiler frame-
work to inline lambda expressions in table functions,

• their exemplary usage in combination with table functions
for labelling, k-Means and PageRank,

• the corresponding source code published as open source,
• an evaluation in terms of scalability when varying the input
size or the number of available threads.

This paper comprises the following sections: Section 2 describes
the fundamentals of lambda expressions in general, including work
related to lambda functions in HyPer and just-in-time compilation
for PostgreSQL. Section 3 goes on to explain PostgreSQL database
architecture with particular emphasis on PostgreSQL internals,
such as developing extensions. Section 4 describes the high-level
concept for integrating lambda expressions in each subpart of the
PostgreSQL database system. Section 5 addresses some low-level
C/C++ issues, particularly with regard to optimisation. Section 6
discusses the implementation of the three data mining algorithms,
that will ultimately use the proposed lambda expressions. Section 7
evaluates the performance of the three data mining algorithms
implemented in this study with different types of input data. The
evaluation results will later be compared with an equivalent HyPer
test run.

2 RELATEDWORK
This section introduces just-in-time compilation for database sys-
tems and tools as used in data analysis. They form the foundation
of lambda functions in the code-generating database system HyPer,
whose table function’s architecture is to be adapted for PostgreSQL.

2.1 Code Generation within Database Systems
PostgreSQL [26] is a disk-based relational database system with
Volcano-style query execution [12], where the top-most operator
requires the underlying ones to produce tuples. Code generation
was introduced in HyPer [15] together with a bottom-up query
execution model that pushes tuples upwards to the parent operator.
Code generation avoids the overhead of interpreted function calls
by first precompiling the query into the LLVM assembler.

Butterstein et. al. [6] demonstrated that expression evaluation
in PostgreSQL is one of the most time-consuming processes in
the database system for TPC-H queries and developed a separate
evaluation library for code generation while leaving the rest of the
PostgreSQL system unchanged. Melnik et. al. [17] subsequently
demonstrated how the internal PostgreSQL functions can be com-
piled with LLVM to improve the execution speed by up to 20 %.
Finally, in 2018, Andres Freund released LLVM support for expres-
sion evaluation as part of PostgreSQL version 111.

2.2 Data Processing Tools
Knowledge discovery on databases, which is usually done using ded-
icated tools such as Pytorch, Theano [3] or TensorFlow [1], involves
data wrangling, data preprocessing, data analysis or even training
of a model [13] to deploy neural networks [21]. Whereas the latter
mostly relies on matrix algebra [18, 28], SQL with user-defined

1https://anarazel.de/talks/fosdem-2018-02-03/jit.pdf

functions (UDFs) is particularly well suited to data preprocessing
and data analysis [10, 23].

To avoid the overhead caused by user-defined functions [8], func-
tions written in PostgreSQL’s procedural language PL/pgSQL can
be transformed into recursive SQL statements [9]. Instead of user-
defined functions, hard-coded data-mining operators as provided by
MADlib [14] for PostgreSQL or that form part of the main-memory
database systems [25, 27] EmptyHeaded [2] and HyPer [15] achieve
better performance for predefined data mining operators. We imple-
mented similar table functions for exemplary usage in conjunction
with lambda expressions and just-in-time (JIT) compilation.

2.3 Lambda Functions in SQL
Many programming languages offer lambda expressions that are
anonymous functions and originate from the lambda calculus di-
vised by Alonzo Church in 1936 [7]. As part of HyPer’s extended
SQL, lambda expressions allow users to inject customised code into
otherwise inflexible table functions [20, 24]. The basic structure of
an SQL lambda function in the HyPer database is as follows:

𝜆(𝑛𝑎𝑚𝑒1, 𝑛𝑎𝑚𝑒2, ...) (𝑒𝑥𝑝𝑟) . (1)
For the remainder of this paper, the term lambda arguments refers

to the named arguments between the first pair of parentheses, while
the term lambda expression body refers to the expression between
the second pair of parentheses. The lambda arguments refer to the
tuple of a table that is passed as a subquery to the table function.
The lambda expression body allows regular SQL expressions to
be constructed out of the table’s attributes. The following lambda
expression calculates the L2 distance between two two-dimensional
points given as part of 𝑆 and 𝑇 :

𝜆(𝑆,𝑇) ((𝑆.𝑥 −𝑇 .𝑥)2 + (𝑆.𝑦 −𝑇 .𝑦)2). (2)
The lambda expressions are only valid when passed as a param-

eter in a call to an operator table function (such as k-Means), since
semantic analysis and type inference is performed on the basis of
the input row types to the function:
CREATE TABLE data(x float , y int);
CREATE TABLE centre(x float , y int); INSERT INTO ...
SELECT * FROM kmeans(

(SELECT x,y FROM data), (SELECT x,y FROM centre),
-- distance function and max. number of iterations
𝜆 (a, b) (a.x-b.x)^2+(a.y-b.y)^2, 3);

3 THE POSTGRESQL DATABASE SYSTEM
This section explains the components of the database system Post-
greSQL, which have been modified to integrate lambda functions
as subqueries and enable compiled execution later on.

3.1 Stages of Query Execution
PostgreSQL query execution comprises multiple stages. The raw
query as a string is passed to the parser, which splits the query
into tokens according to PostgreSQL grammar. The analyser then
proceeds with the semantic analysis, which involves building ex-
pressions, resolving table names, attributes and function calls, and
type checking. The modified query tree is then passed to the plan-
ner/optimiser, which outputs an optimised query tree. Finally, the
plan tree is handed over to the executor, which performs the actual

2

https://anarazel.de/talks/fosdem-2018-02-03/jit.pdf

Freedom for the SQL-Lambda SSDBM 2020, July 7–9, 2020, Vienna, Austria

table scans and function calls and evaluates expressions in order to
produce the result set.

3.2 Functions and Table Functions
Inside of SQL queries, PostgreSQL supports function calls according
to the SQL:20112 standard. These functions return any built-in type
as well as entire tables, which are then referred to as table functions.
Two composite types of table functions are possible:

• TABLE, which includes a fixed row-type definition,
• SETOF RECORD, which does not include a row-type definition
in the function definition and is suitable for functions whose
return type depends on the input data.

Table functions returning SETOF RECORD therefore require the
caller to provide a row-type definition as a column definition list:

SELECT * FROM foo(1, 2) as (a int , b int);

Here, the table function foo returns a row type consisting of two
integer values. The TABLE return type can be used if the row type
of the function is guaranteed to always be the same. Then the fixed
row type must already be provided already in the table definition,
as follows:

CREATE FUNCTION foo(int , int) RETURNS TABLE (a int , b int) AS 'foo
.so', 'foo' LANGUAGE 'C';

The function is now guaranteed to always return the type specified
above and can be called, without providing a column definition list,
as follows:

SELECT * FROM foo(1, 2);

PostgreSQL functions do not support multi-row arguments, i.e. no
subquery returning more than one row can be passed as a param-
eter to a function. This poses a problem, which will be solved by
providing tuple descriptors, as shown in the following sections.

3.3 Important Data Structures
Knowledge of the following PostgreSQL data structures is necessary
to be able to follow the implementation details in this paper:

• A tuplestore is an internal data structure used for material-
isation purposes, such as sorting tables or storing the tuples
returned by a table function.

• Datum represents a single value in PostgreSQL, either a
constant value or a pointer to a complex one, and is an alias
to uintptr_t.

• Object identifiers (Oid) are integer values that are assigned
for each PostgreSQL data type, table or function.

3.4 Extensions and the Function API
Extension functions have full access to all the internal PostgreSQL
data structures, procedures and system catalogues and can therefore
also be used to analyse and influence internal PostgreSQL processes.
Each function must respect the PostgreSQL function API protocol
for reading arguments and returning values. Most importantly,
when returning a multi-row result from a set-returning function,
the function must specify the return mode:

2http://www.postgresql.org/docs/current/static/features.html

• SFRM_ValuePerCall specifies that the function expects to
be called repeatedly, each time returning a single tuple or an
end signal, and

• SFRM_Materialize specifies that the function has returned
all the result tuples in a tuplestore (see Section 3.3) and it is
not expected that it will be called again.

3.5 JIT Compilation
Just-in-time (JIT) compilation with LLVM enables the dynamic gen-
eration and compilation of code on-the-fly from a running program.
Since version 11, PostgreSQL has supported JIT compilation for
frequently used expressions, such asWHERE predicates, to improve
the query execution performance. When compiling PostgreSQL,
JIT compilation has to be enabled with a flag (--with-llvm).

The planner/optimiser will determine whether and to which
types JIT compilation is applied. The PostgreSQLwrapper for LLVM
offers multiple optimisation types, for example:

• PGJIT_EXPR enables the compilation of expressions,
• PGJIT_OPT3 enables strong O3 optimisation during compi-
lation,

• PGJIT_INLINE inlines certain function calls in the expres-
sion based on a cost model, and

• PGJIT_DEFORM optimises column accesses by precomputing
attribute offsets of common row types.

LLVM interacts well with the Clang C compiler, which can gen-
erate IR (Intermediate Representation) bitcode directly from the
PostgreSQL C sources. This allows the PostgreSQL JIT system to
consider its internal functions for inlining and optimisation without
the need to reimplement them in LLVM IR code.

3.6 Expression Evaluation
Expressions in PostgreSQL queries are parsed to expression trees
(sub-trees of the parse tree) and are evaluated in the executor stage.
Each expression tree is first compiled to a sequence of opcodes, that
represent elementary operations such as are needed to evaluate
any expression. There are about 130 different opcodes in total, each
representing one small step in an expression, such as loading a
constant value, calling a function or selecting a specific attribute
from a record value. The opcode sequence generated from the
expression tree is the basis of interpreted and compiled evaluation.

SELECT a.x + 2 * a.y FROM ...

Param(a)

FieldSelect(x)

Param(a)

FieldSelect(y)Const(2)

int8mul()

int8pl() Step Opcode Comment
1. EEOP_PARAM_EXTERN a
2. EEOP_FIELDSELECT .x
3. EEOP_CONST 2
4. EEOP_PARAM_EXTERN a
5. EEOP_FIELDSELECT .y
6. EEOP_FUNCEXPR int8mul()
7. EEOP_FUNCEXPR int8pl()
8. EEOP_DONE End

Figure 2: Example expression with corresponding parse tree
and the opcode sequence generated from it.

3

http://www.postgresql.org/docs/current/static/features.html

SSDBM 2020, July 7–9, 2020, Vienna, Austria M. Schüle, J. Huber, A. Kemper, T. Neumann

Interpreted evaluation simply loops over all steps and directly
performs the computations. Compiled evaluation utilises JIT com-
pilation based on LLVM. For this purpose, the compiling routine
loops over the opcodes in a similar way as the interpreter, but rather
than evaluating the opcodes immediately, the expression is rebuilt
using LLVM primitives such as basic blocks, function calls and
conditional jumps. To avoid unnecessary overhead, the compilation
is delayed until the evaluation is triggered for the first time.

4 HIGH-LEVEL CONCEPT
The starting point for the implementation of lambda expressions is
PostgreSQL version 11.2. This section describes the high-level con-
cept of integrating lambda functions in PostgreSQL and consists of
the lambda syntax, its evaluation and the integration as parameters
in table functions.

4.1 Lambda Function Definitions
It is proposed, that the lambda functions for PostgreSQL will consist
of named lambda arguments and an expression body, inspired by
the HyPer syntax. Lambda expressions in SQL are treated as a
parameter in a call to a table function.

The favoured approach is to make lambda expressions a ded-
icated language feature of PostgreSQL. As a dedicated feature,
lambda expressions can be seamlessly integrated into the existing
grammar and type inference system. This also makes the general
PostgreSQL expression optimiser aware of the lambda expressions,
especially when it comes to analysing and simplifying the lambda
expression body.

Not just the expression body but the entire lambda function is
treated as an expression, as it must be passed as a table function
parameter. We now introduce a new pseudotype called LAMBDA,
which is treated as an expression inside of a table function def-
inition. The table function can access all information associated
with a lambda expression in a newly defined data structure. This
structure contains information about the named arguments, the
return type, the expression tree of the actual expression and the
row-type information for all the parameters involved.

4.2 Passing Input Data to Table Functions
Contrary to HyPer, PostgreSQL only allows subqueries as input for
table functions that return a single tuple. Passing the table name as
a string to the table function in a similar manner to MADlib requires
another database connection to retrieve the data. However, this is
unfeasible, since the semantic analysis of the lambda expressions
cannot deduce the return type of lambda functions during compile
time.

We therefore adjust the PostgreSQL subquery system to support
multi-column and multi-row subqueries. We thus introduce two
new pseudo data types, namely LAMBDACURSOR and LAMBDATABLE.
They both indicate that a table function expects a subquery at the
argument position, without any restrictions on row or attribute
count. Figure 3 shows the difference between the two types.

LAMBDATABLE fully materialises the subquery result into a tuple-
store before passing it to the function. It is appropriate for table
functions, which perform multiple iterations over the data and
calculate the exact memory requirements based on the number of

Subquery

Materialisation

Table Function

Subquery

Table Function

Pointer
Plan
Descriptor

LAMBDATABLE LAMBDACURSOR

Figure 3: Comparison of LAMBDATABLE and LAMB-
DACURSORmodes for passing input data to table functions.

input tuples before processing the data. The table function receives
a pointer to the tuplestore containing the materialised tuples when
it is called.

LAMBDACURSOR does not materialise the subquery result. Rather
than a tuplestore with all materialised tuples, the table function
receives the subquery plan descriptor. This allows the table function
to request the data tuple by tuple directly from the subplan. The
table functions have no prior information as to the number of
returned tuples.

4.3 Efficient Lambda Evaluation
As the injected lambda expressions, such as distance metrics, are
core parts of the table functions, we extend the PostgreSQL ex-
ecutor to precompile these expressions. This paper introduces two
optimisation levels of lambda evaluation in addition to interpreted
execution and JIT optimisation. They apply to algorithms working
with certain data types, e.g., float8 and int64:

• Interpreted execution (L1): The lambda expression is eval-
uated as an ordinary PostgreSQL expressionwith a computed
goto approach.

• JIT-compiled execution (L2): The lambda expression is
evaluated as a JIT-compiled expression, using existing JIT
optimisations of the PostgreSQL executor.

• High-performance JIT-compiled execution (L3): The
lambda expression is rebuilt with a custom LLVM wrap-
per, using basic LLVM operators and native mathematical
functions, which are optimised to generate highly efficient,
compact code. Only a small subset of the PostgreSQL data
types and arithmetic functions is supported.

• High-performance JIT injection (L4): Same as the previ-
ous mode, but the code generated from the lambda expres-
sions is directly injected into the table function or worker
thread code, achieving a near hard-coded performance by
completely optimising external function calls away.

4.4 Table Function Design
The data mining operators will be implemented as table functions,
each bundled in a shared library. PostgreSQL automatically loads
the library when accessing a specific table function for the first
time. If the database has been compiled with --with-llvm, the Post-
greSQL build system can be configured to use the Clang compiler
to automatically generate LLVM IR bitcode files (.bc) from specific

4

Freedom for the SQL-Lambda SSDBM 2020, July 7–9, 2020, Vienna, Austria

source files. In our case, the table functions were developed in C.
This allows stronger JIT optimisations including lambda injection.

The bitcode can be loaded as an LLVM module which may be
combined with the IR code generated from the lambda expressions.
Most importantly, it is possible to inject the lambda expression
bitcode into the table function bitcode, which will greatly improve
the run time due to the reduced number of calls to the lambda
evaluation function. Furthermore, it might be feasible to perform
lambda injection not only for the table functions themselves but
also for worker thread functions, which are executed in parallel.

4.5 Dynamic Row Types
The row format returned by a data mining table function usually
depends on the input data. For example, a k-Means function pro-
duces the same data that it receives as input, plus one extra col-
umn containing an integer describing the assigned cluster number.
When PostgreSQL cannot deduce the type automatically (as for
SETOF RECORD), the SQL query must provide a column definition
list. In the following, the table functions using lambda expressions
will return SETOF RECORD, as the returned row format always de-
pends on the input format.

5 LAMBDA INTEGRATION
This section explains the implementation of the lambda expressions
in PostgreSQL, as provided online3. The main focus is on the nec-
essary extensions required in the various execution stages of the
PostgreSQL query.

5.1 Parser and Analyser Extensions
The extension for lambda expressions affects both parser and the
analyser. We will first describe the PostgreSQL grammar for pars-
ing lambda expressions and then introduce a new data structure
that represents lambda expressions in a parse tree. Finally, we will
describe the semantic analysis based on these building blocks.

5.1.1 Syntax Definition. The foundation for the lambda expres-
sions is formed by a PostgreSQL grammar syntax extension. In a
first step, the PostgreSQL parser is extended by a new grammar
element inspired by the HyPer syntax described in Section 2.3 as
follows:

LAMBDA(𝑛𝑎𝑚𝑒1, 𝑛𝑎𝑚𝑒2, ...) (𝑒𝑥𝑝𝑟).
We prefer the LAMBDA keyword to the 𝜆 symbol as it avoids text
encoding conflicts with non-ASCII characters, which would lead to
problems with the PostgreSQL lexer. The 𝑛𝑎𝑚𝑒𝑛 (𝑛 ≥ 1) variables
denote an arbitrary and unique identifier for the row values used
in expr, which may be any regular PostgreSQL expression.

Given the lambda expression syntax defined above, it is not
necessary to extend the PostgreSQL lexer, because there are no
tokens that need to be introduced by PostgreSQL. Hence, all the
necessary adjustments can be made in the actual grammar.

Inspection of the syntax defined above reveals that the lambda
expression grammar consists of three parts, namely:

• the LAMBDA keyword,
• the comma-separated argument identifier list, and
• the expression body.

3https://gitlab.db.in.tum.de/JakobHuber/postgres-lambda-diff

⟨lambda_ident_list⟩ |= ⟨lambda_ident_list⟩ , | ⟨ColId⟩
⟨lambda_expr⟩ |= LAMBDA (⟨lambda_ident_list⟩) (⟨a_expr⟩)

⟨a_expr⟩ |= ... | ⟨lambda_expr⟩

Figure 4: Grammar rules for parsing a lambda expression
definition in Backus-Naur form.

Apart from being a keyword, LAMBDA should also denote a new
built-in data type. In the lambda expression definitions, the LAMBDA
keyword is followed by an opening parenthesis and therefore be
mistaken for a call to a function named LAMBDA. To avoid this, the
keyword must be defined as a COL_NAME_KEYWORD, which can be
used as a column name but not as a function or type name.

The argument identifier list is simply a comma-separated enu-
meration of identifiers, which can be any string accepted as a col-
umn name. The expression body is expanded by the generic Post-
greSQL arithmetic expression rule denoted by a_expr. Respecting
these definitions yields the grammar rules for lambda expressions
shown in Figure 4.

Since the LAMBDA keyword is defined as a COL_NAME_KEYWORD, it
is possible for a CREATE FUNCTION statement to contain a LAMBDA
function parameter, which can be parsed correctly as a type name
without requiring any changes to the parser.

5.1.2 The LambdaExpr Node. The parsing stage transforms the
input SQL query into a parse tree. For example, possible tree nodes
exist for the SELECT statement, the FROM clause and the WHERE
predicate.

It is also feasible to represent a lambda expression definition as
an Expr node, since it is considered to be an expression according
to the syntax definition. Furthermore, all of the information asso-
ciated with a lambda expression, such as return type information
or argument names, will be used in the parsing, analysing and ex-
ecution stages. For this purpose, a new node named LambdaExpr
will be introduced. This data structure will not only hold parsing
information but is also passed to table functions, allowing them to
perform additional type checks.

typedef struct LambdaExpr {
Expr xpr;
List *args; /* the arguments (list of row aliases) */
Expr *expr; /* the lambda expression */
List *argtypes; /* list describing the argument row types */
Oid rettype; /* return type of the lambda expression */
int rettypmod; /* return typmod of the lambda expression */
Node *exprstate; /* ExprState for execution */
Node *econtext; /* ExprContext for execution */
Node *parentPlan; /* parent PlanState */
int location; /* token location , or -1 if unknown */

} LambdaExpr;

Figure 5: The definition of the LambdaExpr C structure.

Figure 5 shows the C definition of the lambda expression node.
Only two of the fields are filled during the parsing stage. PostgreSQL
builds the parse tree node by node. If the rule for a lambda expres-
sion defined in the previous subsection matches, a list is created
for the argument names (stored in the args field) as well as an

5

https://gitlab.db.in.tum.de/JakobHuber/postgres-lambda-diff

SSDBM 2020, July 7–9, 2020, Vienna, Austria M. Schüle, J. Huber, A. Kemper, T. Neumann

Expr node for the expression body. The location field is set to the
position in the SQL query string where the match starts, which can
be used to report exact error positions in the event of any syntax
errors. These three fields are the only ones filled during parsing.

5.1.3 Type Definitions. Now that the grammar rules for lambda
expressions have been defined, the next step is to register a new
lambda type in the system catalogues. Since lambda expressions
are intended to become a deeply integrated feature of the Post-
greSQL database, the lambda type is registered as a new built-in
type. All of the built-in PostgreSQL types (such as integer, text
and double precision) are registered in the internal pg_type
catalogue.

Each built-in type definition is stored in a data file (pg_type.dat)
together with its name, a unique Oid, and multiple I/O functions.
The I/O functions are Oids of PostgreSQL functions, which convert
binary data to the specified type or perform type casts. In our case,
the I/O functions are defined as dummy functions, which reject any
attempt at converting expressions to or from lambda expressions.
This makes the LAMBDA type a special sort of pseudo-type, in the
sense that expressions of this type can only be read during table
function evaluations. Such pseudotypes are also used in PostgreSQL
for polymorphic types like ANYELEMENT or ANY.

In addition to the LAMBDA type, the two additional subquery types
LAMBDATABLE and LAMBDACURSOR (as explained in Section 4.2) are
registered as pseudo-types in the same fashion.

CREATE OR REPLACE FUNCTION foo (LAMBDA TABLE left , LAMBDA CURSOR
right , LAMBDA expr) RETURNS SETOF RECORD AS 'bar.so', 'foo'
LANGUAGE 'C';

Figure 6: A statement for creating a table function using the
new pseudo-types.

These three new types having been registered, it is now possi-
ble to specify LAMBDA and the two subquery types LAMBDACURSOR
and LAMBDATABLE respectively as parameter types and as part of a
CREATE FUNCTION statement, as shown in Figure 6. In this example,
a table function named foo is defined, with two subquery parame-
ters (one a LAMBDATABLE and the other a LAMBDACURSOR) and one
lambda expression. The types are generic and do not define any
kind of restriction with regard to the type returned by the lambda
expression, the number of lambda arguments or number/types of
columns returned by one of the subqueries.

5.1.4 Semantic Analysis. Now that the syntax extension and type
definitions have been prepared, we can extend the semantic analysis
as part of the PostgreSQL analyser. The purpose of the analyser is
to perform type deductions, check for semantic or other errors that
cannot be detected by a simple syntax check, and resolve the tables,
function calls and other variables used in the query. In particular, the
adjustments necessary for integrating lambda expressions involve
subquery analysis and lambda argument type deduction.

5.2 Planner Adjustments
The PostgreSQL planner transforms the query tree, returned by
the analyser, to a query plan tree. The nodes of a query plan tree

represent operations such as table scans, index scans, function
scans and joins. By default, subqueries returning multiple rows
(such as in an ARRAY expression) are implemented as a subquery
scan followed by a materialisation step. The planner distinguishes
between the two new lambda subquery types: the LAMBDATABLE
type requires an additional materialisation step, which is not needed
by the LAMBDACURSOR type.

5.3 Executor Stage
The executor must be adjusted to respect lambda functions as ex-
pressions, which can be passed as parameters to table functions.
Furthermore, the executor needs to provide an interface, which al-
lows the table functions to efficiently evaluate the lambda functions
as needed.

5.3.1 Subquery Execution. The LAMBDACURSOR and LAMBDATABLE
subquery types now need to be considered in the executor stage.
The existing executor routines for subqueries first execute the sub-
query and then process the results according to the type of the
subquery, such as reading the returned rows into an array or evalu-
ating an EXISTS expression. The implementation of the two new
types will follow this pattern.

The LAMBDATABLE implementation is constructed in a similar
way to the ARRAY subquery evaluation, for which the executor
initialises an empty array and reads all values produced by the
(single-column) subquery into it. Likewise, for LAMBDATABLE, a tu-
plestore (see Section 3.3) is initialised and subsequently filled with
the tuples (full materialisation).

The LAMBDACURSOR implementation omits the materialisation
step. Instead, a pointer to the raw PlanState of the subquery is
returned as a Datum pointer. This effectively delays the subquery
execution until the execution of the table function.

5.3.2 Lambda Expression Initialisation. When traversing the query
tree, the executor will process the lambda functions while prepar-
ing the arguments for the table function call. Each PostgreSQL
expression must be initialised independently of the execution mode
(interpreted/compiled), before it can be evaluated. This also holds
for the lambda function body.

Two data structures are created during the built-in initialisation:
an ExprState and an ExprContext. The ExprState contains the
opcode sequence needed to evaluate the expression as described in
Section 3.6. The opcode sequence is generated from the expression
tree bottom-up. During the generation of the opcodes, PostgreSQL
allocates memory for the results and stores fixed pointers to the
memory location where the result is to be stored.

The ExprContext is for holding context information for each
evaluation, such as placeholders for each of the nodes contained
in an expression. Two pointers to each of these data structures
are stored in the LambdaExpr node. Finally, the LambdaExpr node
is cast to a Datum pointer, which can then be passed to the table
function call.

5.4 Lambda Function Evaluation
As outlined in Section 4.3, lambda functions support four differ-
ent evaluation modes, of which two are based on the existing

6

Freedom for the SQL-Lambda SSDBM 2020, July 7–9, 2020, Vienna, Austria

interpreted expression evaluation and two rely on a new high-
performance implementation. This subsection explains the imple-
mentation of these four modes, as well as their interplay with table
functions.

5.4.1 Table Function Execution. The executor calls table functions
as part of the query plan once all the function arguments, including
lambda expressions, have been processed. Before a table function
can be called, the extension module, which is a shared library, must
be located and loaded into memory. It is necessary for the table
function to be aware of the data types of its arguments and it
must, therefore, correctly cast the returned Datum values to their
respective pointer types. Subquery arguments can be read either
from a tuplestore (for LAMBDATABLE) or requested directly from a
given subquery plan node (for LAMBDACURSOR).

The table functions implemented as part of this study use the
SFRM_Materialize mode for returning tuples, which requires out-
put tuples to be written to a tuplestore. This will avoid overhead,
unlike with the ValuePerCall mode, where the table function is
called repeatedly until no more tuples are produced. Furthermore,
the table functions return a tuple descriptor, representing the row
format of the returned tuples. This tuple descriptor must match the
descriptor provided in the column definition list in the SQL query.

5.4.2 Interpreted Execution. The most basic level of lambda evalu-
ation implemented as part of the PostgreSQL lambda extension is
the one on which the opcode sequence is processed without any
optimisations apart from the trivial simplifications performed by
the planner. Interpreted execution is best suited to very small in-
put sizes in time-critical contexts, where the overhead needed for
additional optimisation would considerably increase the response
times.

5.4.3 JIT-Compiled Execution. Since version 11, PostgreSQL has
been shipped with a JIT compilation interface for evaluating ex-
pressions as outlined in Section 3.5. Rather than processing the
opcode sequence in each evaluation, the sequence is transformed to
LLVM IR bitcode. PostgreSQL offers different levels of optimisation
for the generated code prior to its execution. In particular, a major
performance enhancement can be achieved through inlining.

The decision, as to which function calls should be inlined is based
on a cost model and takes into account call stack depth and func-
tion complexity. A fixed threshold balances compilation time and
execution time: once the accumulated cost of all functions inlined
so far exceeds the threshold, no more functions are inlined. The
actual inlining is done utilising LLVM bitcode, which is generated
during the compilation of PostgreSQL. The functions not eligible
for inlining are transformed into plain C function calls.

The final LLVM module consists of a function which evaluates
the expression as well as all of the inlined functions it depends on.
The module is then compiled using LLVM ORC4, which provides
a modular interface for JIT compilation. An additional optimisa-
tion step (O3 level optimisation) may be applied to the generated
code. Finally, a function pointer can be obtained from LLVM ORC.
The function expects an ExprState and an ExprContext and will
return the result as a Datum pointer.

4https://llvm.org/docs/ORCv2.html

This mode is best suited for algorithms, for which the induced
compilation overhead is negligible in comparison to the perfor-
mance benefit gained for large numbers of expression evaluations.

5.4.4 High-Performance JIT-Compiled Execution. The JIT-compila-
tion framework shipped with PostgreSQL has twomajor drawbacks:
first, the compiled expressions lack thread safety. This is due to the
way the opcode sequence is generated from the expression trees:
every node in an expression tree will first generate the code needed
to compute the results for its child nodes, for which fixed memory
positions are allocated. The opcode entries are C structures with a
Datum* pointer to the memory position at which the result will be
stored during execution.

The second drawback is due to the complexity of the generated
code. Each PostgreSQL function or operator is backed by a C func-
tion implementing the operation. The built-in implementations
perform various type checks and validations, including multiple
sub-calls, prior to actually computing the desired result.

To overcome these issues, a new JIT framework based on LLVM
specifically for lambda expressions was introduced as part of this
study. The new system supports thread-safe lambda expressions,
which implement a small subset of all the PostgreSQL expression
opcodes covering most use cases for lambda expressions. Using
only primitive LLVM data types and mathematical function calls, a
near hard-coded level of performance can be achieved. In a similar
way to the built-in JIT compilation, the new system compiles an
evaluation function, which returns the result in row-major order.

The expression tree generates the opcode entries of the lambda
function in postfix order, to allow a stack-based buildup of the
LLVM structure. For each step in the sequence, a given opcode type
will take a certain number of elements from the stack, process them
(i.e. wrap them in other LLVM structures) and place zero or more
new elements on the stack. The new code generator provides an
implementation only for the opcode types needed for our lambda
expressions (namely, field selections, constants and function calls).
These types, along with the number of their input and output stack
elements, are shown in Table 1.

Opcode Type # in # out Description

EEOP_FIELDSELECT[𝑖] 1 1 Takes the row value from the top
of the stack and places the 𝑖-th
field from it on the stack

EEOP_PARAM_EXTERN[𝑖] 0 1 Places the 𝑖-th lambda function
argument as a row value on the
stack.

EEOP_CONST[𝑐] 0 1 Places a constant 𝑐 on the stack.
EEOP_FUNCEXPR[𝑜] 𝑛 1 Takes 𝑛 values from the stack,

calls the function with Oid 𝑜

with the values as arguments and
places the result on the stack.

EEOP_DONE 1 0 Returns the value on top of the
stack.

Table 1: Opcode subset supported by the high-performance
JIT compiler.

Once these functions have been implemented, the generated
LLVM structure can be compiled and optimised using the LLVM
ORC. Figure 7 shows the optimised LLVM IR generated from a
lambda expression calculating an L2 distance metric (𝑎.𝑥 − 𝑏.𝑥)2 −

7

https://llvm.org/docs/ORCv2.html

SSDBM 2020, July 7–9, 2020, Vienna, Austria M. Schüle, J. Huber, A. Kemper, T. Neumann

(𝑎.𝑦 − 𝑏.𝑦)2 between two points. Note that the calls to pow() have
been respectively replaced by two fmul() instructions.

LAMBDA(a,b)((a.x - b.x)^2 + (a.y - b.y)^2)

Original code:
define i64 @evalexpr_4_0(i64 **) #0 {
entry:
%1= getelementptr i64*,i64** %0,i32 0
%2= load i64*,i64** %1
%3= getelementptr i64 ,i64* %2,i32 0
%4= load i64 ,i64* %3
%5= getelementptr i64*,i64** %0,i32 1
%6= load i64*,i64** %5
%7= getelementptr i64 ,i64* %6,i32 0
%8= load i64 ,i64* %7
%9= bitcast i64 %8 to double
%10= bitcast i64 %4 to double
%fsub=fsub double %10,%9
%11= call double @pow(double %fsub ,

double 2.000000e+00)
%12= getelementptr i64*,i64** %0,i32 0
%13= load i64*,i64** %12
%14= getelementptr i64 ,i64* %13,i32 1
%15= load i64 ,i64* %14
%16= getelementptr i64*,i64** %0,i32 1
%17= load i64*,i64** %16
%18= getelementptr i64 ,i64* %17,i32 1
%19= load i64 ,i64* %18
%20= bitcast i64 %19 to double
%21= bitcast i64 %15 to double
%fsub1=fsub double %21 ,%20
%22= call double @pow(double %fsub1 ,

double 2.000000e+00)
%fadd=fadd double %11 ,%22
%23= bitcast double %fadd to i64
ret i64 %23

}
declare double @pow(double ,double)

O3 optimized code:
define i64 @evalexpr_4_0(i64**

nocapture readonly)
local_unnamed_addr #0 {

entry:

%1= bitcast i64** %0 to double **
%2= load double*,double ** %1,align 8
%3= load double ,double* %2,align 8
%4= getelementptr i64*,i64** %0,i64 1
%5= bitcast i64** %4 to double **
%6= load double*,double ** %5,align 8
%7= load double ,double* %6,align 8
%fsub=fsub double %3,%7
%square=fmul double %fsub ,%fsub
%8= getelementptr double ,double* %2,

i64 1
%9= load double ,double* %8,align 8
%10= getelementptr double ,double* %6,

i64 1
%11= load double ,double* %10,align 8
%fsub1=fsub double %9,%11
%square2=fmul double %fsub1 ,%fsub1
%fadd=fadd double %square ,% square2
%12= bitcast double %fadd to i64
ret i64 %12

}

declare double @pow(double ,double)

Figure 7: LLVM IR code generated from a lambda function
calculating the L2 distance between two points.

5.4.5 High-Performance JIT Injection (L4). We improved the code
generator introduced in the previous subsection by introducing
a JIT-injection API (see Figure 8). Directly injecting the code of a
lambda expression into one of the table functions avoids external
function calls. The LLVM IR generated from the C source code is
modified to allow JIT injection.

The PostgreSQL build system automatically generates the corre-
sponding bitcode files (.bc) from the table function files. At runtime,
the bitcode of the desired table function (its C function name is spec-
ified as a string) is first loaded as an LLVM module. It is assumed
that all lambda functions passed to the table function have already
been built and stored in another LLVM module. To actually inject
the lambda expression, an LLVM function pass needs to recognise
the locations at which the lambda evaluation is to be executed.

First, the modules of the lambda function and the table function
are merged into a common one. Once all IR instructions have been
checked, calls to the lambda evaluation functions replace the func-
tion call instructions stored in a temporary list. Finally, a function
pointer to the table function is retrieved and can be called right
away.

5.4.6 Row-Type Deduction. To avoid specifying a column defini-
tion list explicitly, table functions should be able to deduce sub-
query types automatically. Internally, this is solved during the
semantic analysis using a helper function. This helper function
receives a tuple descriptor for the two new types, LAMBDATABLE
and LAMBDACURSOR and returns another one as input for the table
function.

PostgreSQL Executor

LLVM IR of Lambda Expr.

Table Function Impl.

LLVM IR of Table Function

Injection Pass/JIT Compiler

Native Code

Clang

Figure 8: Structure of the JIT injection API.

6 TABLE FUNCTION IMPLEMENTATIONS
In this study, three algorithms were implemented as table func-
tions to demonstrate and evaluate PostgreSQL with lambda expres-
sions and enhanced JIT compilation. These are labelling, k-Means
clustering and PageRank computation. This section outlines the
implementation details for these table functions.

6.1 Labelling
The labelling function adds a label given as a lambda expression to
existing data. It takes one input relation and one lambda expression
as arguments and returns all input tuples with the result of the
lambda function appended to the tuple as an additional column.
For this problem, we choose the type LAMBDACURSOR as a subquery,
since the algorithm only needs to iterate over the input tuples once
and we do not need to initialise a fixed-size data structures before
execution.

postgres =# SELECT * FROM label_fast ((SELECT x, y FROM points LIMIT
10), LAMBDA(a)(sqrt(a.x^2 + a.y^2)));
x | y | label

-470.860150642693| -124.311549589038|486.993473082019
-467.270653229207| -432.609483599663|636.783188117915

Figure 9: Example output of the labelling function.

Two variants are implemented as labelling functions: label and
label_fast. The former uses basic JIT-compiled execution, while
the latter uses high-performance JIT-compiled execution and is,
therefore, faster, but limited to numerical data types. Figure 9 shows
an example output of a label_fast call. In compliance with the
API defined in Section 5.4.6, both functions offer a common row-
type deduction function, which simply appends a column named
label to the tuple descriptor of the input record type. The return
type of the lambda function determines the data type of the added
column.

6.2 PageRank
PageRank is a graph mining algorithm that labels nodes according
to their incoming and outgoing vertices. Page and Brin [19] devel-
oped the algorithm as the foundation of Google’s search engine
for ranking websites. Each node receives a PageRank value, that
devolves to connected nodes in each iteration. After convergence,
the final PageRank value corresponds to the node’s importance.

8

Freedom for the SQL-Lambda SSDBM 2020, July 7–9, 2020, Vienna, Austria

The PostgreSQL table function for computing PageRank values
expects the following parameters:

• The subquery yielding the input tuples 𝑇 ,
• two lambda functions 𝜆𝑠𝑟𝑐 and 𝜆𝑑𝑠𝑡 selecting the source and
destination node identifier from an input tuple,

• the damping factor 𝛼 and
• a threshold 𝑡 for termination of the algorithm.

𝑇 describes the input tuples that store information about the
vertices. Each lambda expression, 𝜆𝑠𝑟𝑐 and 𝜆𝑑𝑠𝑡 , selects the input
and output node per tuple that can be constructed using arbitrary
expressions. They form a set of edges (Equation 3) representing the
links-to relationship between two given nodes. Implicitly, they also
define the set of nodes (Equation 4).

Initially, the PageRank for each node is equally distributed (Equa-
tion 5) so that the sum of all values is one. Afterwards, the PageRank
values are iteratively computed for all nodes (Equation 6). The new
PageRank is the sum of the proportionate PageRank values of all
nodes connected via incoming edges, with 𝛼 as the damping factor:

𝐸 = {(𝜆𝑠𝑟𝑐 (𝑒1), 𝜆𝑑𝑠𝑡 (𝑒2)) | 𝑒1, 𝑒2 ∈ 𝑇 }, (3)
𝑃 : = {𝑠 | ∃𝑑 : (𝑠, 𝑑) ∈ 𝐸} ∪ {𝑑 | ∃𝑠 : (𝑠, 𝑑) ∈ 𝐸}, (4)

𝑃𝑅0 (𝑑) :=
1
|𝑃 | , (5)

𝑃𝑅𝑖+1 (𝑑) := 𝛼 ·
∑

(𝑠,𝑑) ∈𝐸

𝑃𝑅(𝑠)𝑖
|{𝑝 | (𝑠, 𝑝) ∈ 𝐸}| +

1 − 𝛼

|𝑃 | . (6)

The input tuples𝑇 are passed to the table function as a LAMBDATABLE
parameter. This allows the function to correctly allocate the amount
of memory to the data structures that is needed for the algorithm
before the input data is read. To enable efficient computation, the
edges are stored in a compressed sparse row format similar to
HyPer [20]. This also involves mapping the nodes to dense integer
values (see Figure 10). The resulting sparse row encoding of the
example is shown in Figure 11. The row is a linear array of node
identifiers. Each node is assigned a starting position in the row
from which the identifiers of its incoming nodes can be read.

src dst

30786325628624 4194
32985348837431 4194
32985348867163 4194
32985348878771 4194
22854 8333
55093 8333
2199023273826 8333

→

Original key New key

30786325628624 0
4194 1
32985348837431 2
32985348867163 3
32985348878771 4
22854 5
8333 6
55093 7
2199023273826 8

Figure 10: Edge table and dictionary for dense relabelling.

The relabelling step is implemented using the built-in Post-
greSQL hash table data structure as a dictionary. The dictionary
has as a key the node identifier returned by the two lambda func-
tions and returns a pointer to a C struct holding all the important
metadata such as the original key and the number of outgoing
edges.

1
↓

6
↓

0 2 3 4 5 7 8

Figure 11: Example of compressed sparse row encoding: the
node with the new key 1 is connected via incoming edges to
the nodes 0, 2, 3, 4.

Multiple worker threads compute the actual PageRank. Each of
the 𝑛 worker threads is assigned (at most) ⌈ |𝑃 |𝑛 ⌉ nodes, by which
to compute the next PageRank value according to the update rule
defined above. The new PageRank value is stored inside the C
struct of the corresponding page. To avoid concurrent read or write
accesses, each struct has two values for its PageRank, which alter-
natingly take the roles of 𝑃𝑅(𝑝)𝑖 and 𝑃𝑅(𝑝)𝑖+1. After each iteration,
the main thread waits until all workers have finished their compu-
tations and writes the new PageRank values out. The computation
ends when the change for every node falls below a certain threshold:
max
𝑝∈𝑃

|𝑃𝑅(𝑝)𝑖 − 𝑃𝑅(𝑝)𝑖+1 | ≤ 𝑡 .

Finally, the original keys are restored and the result set is popu-
lated. The returned row type consists of one column named node
for the nodes and a float8 column named PageRank, which holds
the final PageRank values. Figure 12 shows an example output of
the PageRank function for a person-knows-person data set.

postgres =# SELECT * FROM pagerank ((SELECT src ,dst FROM knows),
LAMBDA(src)(src.src), LAMBDA(dst)(dst.dst), 0.9, 0.001, 45)
ORDER BY pagerank DESC;
node | pagerank

28587302384882 |0.000403720299288661
4398046574506 | 0.00039321123228248

26388279120130 |0.000390113303915129

Figure 12: Example output of the PageRank function.

6.3 k-Means Clustering
The third table function implemented as part of this study is the
k-Means clustering algorithm as described by Lloyd [16]. Given a
set of 𝑘 2-dimensional points 𝑃 = {𝑝1, ..., 𝑝𝑘 } and𝑚 initial cluster
centres 𝐶 = {𝑐1, ..., 𝑐𝑚} ⊂ 𝑃 , each point is assigned to its closest
cluster centre. Afterwards, the cluster centres are set to the centre
of all the points assigned to it. This process is repeated until the
cluster assignments converge. The corresponding table function
accepts the following arguments:

• The subquery yielding the input points 𝑃 ,
• the subquery yielding the initial cluster centres 𝐶 ,
• a lambda function 𝜆𝑑𝑖𝑠𝑡 , which calculates the distance be-
tween two given points, and

• the expected number𝑚 of clusters.
Both input subqueries need to have the same row format and are

loaded as LAMBDATABLE arguments. This implementation supports
two-dimensional points and requires the 𝑥 and 𝑦 coordinates to be
given as float8 values. The lambda function 𝜆𝑑𝑖𝑠𝑡 must, therefore,
accept two tuples and return the result as a float8 value.

Initially, the points and cluster centres are loaded into pre-allo-
cated arrays, which comply with the Datum** parameter format

9

SSDBM 2020, July 7–9, 2020, Vienna, Austria M. Schüle, J. Huber, A. Kemper, T. Neumann

postgres =# SELECT * FROM kmeans ((SELECT (latitude / 180 * pi()) AS
lat , (longitude / 180 * pi()) AS lng , rowid FROM airports

LIMIT 8), (SELECT (latitude / 180 * pi()) AS lat , (longitude
/ 180 * pi()) AS lng , rowid from airports limit 1500000) ,
LAMBDA(a,b)(2.0 * atan2(sqrt(sin((b.lat -a.lat)/2.0) ^ 2.0 +
cos(a.lat) * cos(b.lat) * (sin((b.lng - a.lng) / 2.0) ^ 2.0))
, sqrt(1-sin((b.lat -a.lat)/2.0) ^ 2.0 + cos(a.lat) * cos(b.
lat) * (sin((b.lng - a.lng) / 2.0) ^ 2.0)))), 8);
lat | lng |rowid|cluster

-0.0908806884493311| 2.54449808875909| 2 | 2
-0.101696667808256| 2.51844038907048| 3 | 2
-0.114664693557401| 2.56085139685547| 4 | 2
-0.164818079727474| 2.56947374609134| 5 | 2

-0.0625496353943785| 2.50749719384123| 6 | 2
1.06745208970995| -0.792833243106988| 7 | 7

Figure 13: Textual k-Means output for an airport data set.

(a) Airport data set. (b) Uniformly distributed points.

Figure 14: Visualised k-Means output.

expected by the high-performance lambda expressions. The average
for the cluster centres is stored separately by each worker thread
and only written back after each iteration, which allows concurrent
read access to the coordinates.

Just like the PageRank table function, the k-Means function sup-
ports multi-threaded computation and spawns 𝑛 worker threads.
However, for this task, the distance function 𝜆𝑑𝑖𝑠𝑡 is injected di-
rectly into the worker thread code, using the thread-safety of the
JIT injection framework explained earlier. Each of the 𝑛 workers
processes (at most) ⌈ |𝑃 |𝑛 ⌉ points in each iteration. The point-cluster
distance is computed for each point/cluster pair, and the point is
then assigned to the cluster with the minimum distance:

𝑐𝑖+1 (𝑝) := argmin
𝑐∈𝐶

𝜆𝑑𝑖𝑠𝑡 (𝑝, 𝑐) . (7)

The distance function specified as a lambda expression allows
various use cases and does not limit the algorithm to a specific
type of coordinate system: A Euclidean distance function may be
specified for (𝑥,𝑦) coordinate pairs, whereas a haversine formula
might be provided to compute a geographical distance between
two latitude/longitude coordinates. The row format returned by
the table function consists of all input columns of point 𝑝 with one
additional integer column specifying the index 𝑐 (𝑝) of the cluster
the point has been assigned to.

Figure 13 shows the SQL query for the k-Means table function ap-
plied to an airport data set using the haversine formula as a lambda
function. Figure 14 shows the visualisation of clustering with k-
Means for the airport data set as well as for uniformly distributed
Euclidean points, effectively producing a Voronoi diagram.

7 EVALUATION
This section discusses the evaluation of the PostgreSQL lambda
extension. For evaluation, we benchmarked the table functions

with the generated data as well as real-world data sets, varying
the number of input tuples or the available threads. We ran k-
Means with ten clusters and terminated after 80 iterations. For
PageRank, the damping factor 𝛼 was set to 0.85 and the threshold
to 0.00001 and we terminated the computation after a minimum of
100 iterations.

7.1 Data Sets
The LDBC Social Network Benchmark5 data set was used for the
PageRank evaluation. It simulates activity on a social network and
includes a person-knows-person relation. The data set used for this
evaluation was generated by the LDBC data generator script with a
scale factor of 10, resulting in 1.9 · 106 edges for the person-knows-
person relation. The PageRank algorithm without damping was
used to determine the “best-known” persons in the database.

An excerpt from the Chicago taxi trip data set6 was used to
evaluate the k-Means clustering. It contains all Chicago taxi rides,
including drop-off locations, given as latitude and longitude co-
ordinates. An additional data set for the k-Means clustering algo-
rithm consisting of 2 · 107 uniformly distributed Euclidean points in
[−500.0, +500.0] was generated directly from an SQL script. These
points were also used for evaluating the labelling function.

We also tested the labelling function with generated data (using
the built-in generated_series function) of various sizes.

7.2 Test Environment
All experiments were run on a Ubuntu 18.04.3 LTS machine with an
Intel Xeon E5-2660 v2 (2.20GHz) processor with 20 cores/40 threads
and approximately 252 GiB of main memory. The (modified) Post-
greSQL database (version 11.2) was compiled on the machine with
LLVM 7 for JIT support. In addition, a HyPer instance support-
ing the new lambda operators [24] was running on the server for
comparative measurements.

Each test was executed five times and the results were averaged.
To render the results more comparable to HyPer, which is purely
a main-memory database, the work_mem configuration parameter
of PostgreSQL was set to 8 GB. This prevents PostgreSQL from
writing out any tuplestores to disk, by keeping it working only in
main memory.

Most of the measurements were conducted from a Python script,
using the psycopg2 extension for database access. For both HyPer
and PostgreSQL, a local Unix socket was used for the connection.
The measurement time spanned the entire execution time including
parsing and compilation time. To measure the JIT compilation time
and actual execution time separately in PostgreSQL, the compilation
times were measured internally and written to a log file.

7.3 Varying the Input Size
The first tests evaluated the three table functions (labelling, k-Means
clustering and PageRank) with different input sizes. A comparative
measurement was run on the equivalent query in the HyPer data-
base. The input sizes were varied by specifying a respective LIMIT
for the subqueries when loading the input data.

5https://github.com/ldbc/ldbc_snb_datagen
6https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew

10

Freedom for the SQL-Lambda SSDBM 2020, July 7–9, 2020, Vienna, Austria

101 102 103 104 105 106

10−1

100

Number of input tuples

Ru
nt
im

e
in

𝑠

PSQL L4 JIT
HyPer

(a) Chicago Taxi Data Set.

101 102 103 104 105 106
10−1

100

101

Number of input tuples

Ru
nt
im

e
in

𝑠

PSQL L4 JIT
HyPer

(b) Random Points, HyPer vs. PSQL.

101 102 103 104 105 106
0

2

4

6

Number of input tuples

Ru
nt
im

e
in

𝑠

hardcoded
L3 JIT
L4 JIT

(c) Random Points, PSQL modes.

Figure 15: Varying the input size for k-Means where 𝑘 = 10, with two dimensions and 80 iterations: (a) with the Chicago taxi
data set and (b) with randomly generated points; (c) compares the different compilation modes.

Both high-performance (L3) and basic JIT-compiled (L2) lambda
expressions were tested for the label function (see Figure 16). The
high-performance implementations were highly competitive with
respect to their HyPer counterparts, whereas HyPer outperformed
the built-in PostgreSQL JIT compilation for larger inputs.

101 102 103 104 105

10−2

10−1

Number of input tuples

Ru
nt
im

e
in

𝑠

PSQL L2 JIT
PSQL L3 JIT

HyPer

(a) generate_series.

101102103104105106107
10−2
10−1
100
101
102

Number of input tuples

Ru
nt
im

e
in

𝑠

PSQL L2 JIT
PSQL L3 JIT

HyPer

(b) Chicago Taxi Data.

Figure 16: Varying the input size for labelling.

101 102 103 104 105 106

10−1

100

Number of input tuples

Ru
nt
im

e
in

𝑠 PSQL
HyPer

(a) Varying the input size.

0 50 100

1.2

1.25

1.3

Number of workers

Ru
nt
im

e
in

𝑠

(b) Multi-threading test.

Figure 17: PageRank: LDBC Person-Knows-Person data set,
106 tuples, L2 JIT, 𝛼 = 0.85, 100 iterations.

For k-Means, we evaluated L3 and L4 evaluation modes (see Fig-
ure 15). In a separate experiment, the PostgreSQL lambda evalua-
tion was compared with a hard-coded implementation, which was
optimised with O3 level by the compiler. For this purpose, the com-
putations done by the lambda expression were hard-coded directly
in the table function. Figure 15c shows that the overhead induced
by the JIT-compilation was very low and barely measurable for
smaller inputs.

When varying the number of input tuples, the evaluation for
PageRank (see Figure 17a) with the LDBC data set reveals a constant
overhead of about 250 ms, which is caused during preprocessing
when creating a dictionary. This problem could be solved by opti-
mising the preprocessing with modern data structures that support
multi-threaded reads and writes rather than the built-in PostgreSQL
hash table implementation. For the PageRank test, the PostgreSQL
query had an additional ORDER BY PageRank DESC clause attached,
accounting for the fact that the HyPer implementation returns the
tuples sorted, which the PostgreSQL implementation does not do.

7.4 Multi-Threading Tests
For the multi-threaded implementations of the k-Means and Page-
Rank functions, modified versions of these functions were imple-
mented. These allow the number of worker threads to be varied
directly from SQL. Based on the test results shown in Figure 18, it
can be observed that for the uniformly distributed k-Means test, run
time decreases by approximately 20 % with every eight additional
threads, until saturation occurs from 80-90 threads onwards. This
conforms with the number of logical cores of the evaluation server
and shows that the algorithms make efficient use of all available
cores. For the Chicago taxi trips data set, saturation already occurs
from 40 threads onwards due to the overall cluster convergence
being considerably faster than for uniformly distributed data.

0 50 100

5
10
15
20

Number of workers

Ru
nt
im

e
in

𝑠

(a) Randomly generated points.

0 50 100
4

6

8

Number of workers

Ru
nt
im

e
in

𝑠

(b) Chicago taxi data set.

Figure 18: Multi-threading tests for k-Means where 𝑘 = 10,
with two dim., 80 iterations and (a) 2 · 107 or (b) 106 tuples.

The performance benefits achieved through multi-threading
were not as high for PageRank as for k-Means, as illustrated by Fig-
ure 17b. This is mainly due to the fact that the most time-consuming
tasks in PageRank are the preprocessing/relabelling steps, which
are not multi-threaded in this implementation. The actual PageRank
algorithm iterations take up only a very small percentage of the
total execution time.

11

SSDBM 2020, July 7–9, 2020, Vienna, Austria M. Schüle, J. Huber, A. Kemper, T. Neumann

8 CONCLUSION
This study has successfully introduced a way of integrating lambda
expressions in the open-source database system PostgreSQL. First,
the possibilities of using lambda expressions in database systems
were illustrated based on the existing HyPer system with its high-
performance data mining operators. In order to integrate lambda
functions in PostgreSQL, its grammar had to be adjusted to accept
the new lambda expression syntax. The PostgreSQL extension sys-
tem made for a good foundation for the new table functions in
supporting lambda expressions, as they allowed functions to be im-
plemented in C and called from SQL. However, one major obstacle
emerged from the way subqueries were handled internally: sub-
queries were not able to return more than one column when passed
as a parameter to a table function. This problem was successfully
solved by introducing two new types of subqueries, which could be
read from table functions. Furthermore, table functions using one
of the new subquery types were equipped with automatic row-type
deduction, rendering column definition lists in SQL unnecessary,
thus making the usage of the new table functions more convenient.

PostgreSQL already supported basic JIT compilation, so it was
taken as the starting point for the new lambda function evaluation.
This study introduced four modes for evaluating lambda expres-
sions, two of them using the existing JIT compilation system and
the other two using a new JIT compilation framework backed by
lightweight LLVM expressions. This idea was partly inspired by
the query compilation method found in the HyPer database system,
in which queries are compiled entirely into native code before they
are executed. Three exemplary data mining algorithms, namely,
k-Means, labelling and PageRank, were implemented as table func-
tions, using the new lambda expression system. Evaluation with
different types of test data sets revealed highly competitive levels
of performance and scalability. The extension can therefore be re-
garded as a promising foundation for a variety of data mining tasks
in the PostgreSQL database system.

REFERENCES
[1] Martín Abadi et al. 2016. TensorFlow: Large-Scale Machine Learning on Het-

erogeneous Distributed Systems. CoRR abs/1603.04467 (2016). arXiv:1603.04467
http://arxiv.org/abs/1603.04467

[2] Christopher R. Aberger, Andrew Lamb, Kunle Olukotun, and Christopher Ré. 2017.
Mind the Gap: Bridging Multi-Domain Query Workloads with EmptyHeaded.
PVLDB 10, 12 (2017), 1849–1852. http://www.vldb.org/pvldb/vol10/p1849-aberger.
pdf

[3] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Good-
fellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: new features and speed improvements. CoRR abs/1211.5590
(2012). arXiv:1211.5590 http://arxiv.org/abs/1211.5590

[4] Anant P. Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande,
Aaron J. Elmore, Samuel Madden, and Aditya G. Parameswaran. 2015. DataHub:
Collaborative Data Science & Dataset Version Management at Scale. In CIDR
2015, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper18.pdf

[5] Mike Brachmann, William Spoth, Oliver Kennedy, Boris Glavic, Heiko Mueller,
Sonia Castelo, Carlos Bautista, and Juliana Freire. 2020. Your notebook is not
crumby enough, REPLace it. In CIDR 2020, Amsterdam, The Netherlands, January
12-15, 2020, Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/
papers/p13-brachmann-cidr20.pdf

[6] Dennis Butterstein and Torsten Grust. 2016. Precision Performance Surgery for
PostgreSQL: LLVM-based Expression Compilation, Just in Time. PVLDB 9, 13
(2016), 1517–1520. https://doi.org/10.14778/3007263.3007298

[7] Alonzo Church. 1936. An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics 58, 2 (April 1936), 345–363. https://doi.org/10.
2307/2371045

[8] Bin Dong, Patrick Kilian, Xiaocan Li, Fan Guo, Suren Byna, and Kesheng Wu.
2019. Terabyte-scale Particle Data Analysis: An ArrayUDF Case Study. In SSDBM
2019, Santa Cruz, CA, USA, July 23-25, 2019. ACM, 202–205. https://doi.org/10.
1145/3335783.3335805

[9] Christian Duta, Denis Hirn, and Torsten Grust. 2020. Compiling PL/SQL Away. In
CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p1-duta-cidr20.pdf

[10] Ahmed Eldawy, Ibrahim Sabek, Mostafa Elganainy, Ammar Bakeer, Ahmed
Abdelmotaleb, and Mohamed F. Mokbel. 2017. Sphinx: Empowering Impala for
Efficient Execution of SQL Queries on Big Spatial Data. In SSTD 2017, Arlington,
VA, USA, August 21-23, 2017, Proceedings (Lecture Notes in Computer Science),
Vol. 10411. Springer, 65–83. https://doi.org/10.1007/978-3-319-64367-0_4

[11] Maxim Filatov and Verena Kantere. 2016. PAW: A Platform for Analytics Work-
flows. In EDBT 2016, Bordeaux, France, March 15-16, 2016. OpenProceedings.org,
624–627. https://doi.org/10.5441/002/edbt.2016.64

[12] Goetz Graefe. 1994. Volcano - An Extensible and Parallel Query Evaluation
System. IEEE Trans. Knowl. Data Eng. 6, 1 (1994), 120–135. https://doi.org/10.
1109/69.273032

[13] Ali Hadian and Thomas Heinis. 2019. Interpolation-friendly B-trees: Bridging the
Gap Between Algorithmic and Learned Indexes. In EDBT 2019, Lisbon, Portugal,
March 26-29, 2019. OpenProceedings.org, 710–713. https://doi.org/10.5441/002/
edbt.2019.93

[14] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library or MAD Skills,
the SQL. PVLDB 5, 12 (2012), 1700–1711. http://vldb.org/pvldb/vol5/p1700_
joehellerstein_vldb2012.pdf

[15] Nina Hubig, Linnea Passing, Maximilian E. Schüle, Dimitri Vorona, Alfons
Kemper, and Thomas Neumann. 2017. HyPerInsight: Data Exploration Deep
Inside HyPer. In CIKM 2017, Singapore, November 06 - 10, 2017. 2467–2470.
https://doi.org/10.1145/3132847.3133167

[16] Stuart P. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Information
Theory 28, 2 (1982), 129–136. https://doi.org/10.1109/TIT.1982.1056489

[17] Dmitry Melnik, Ruben Buchatskiy, Roman Zhuykov, and Eugene Sharygin. 2017.
JIT-compiling SQL queries in PostgreSQL using LLVM.

[18] Dimitar Misev and Peter Baumann. 2014. Extending the SQL array concept to
support scientific analytics. In SSDBM ’14, Aalborg, Denmark, June 30 - July 02,
2014. ACM, 10:1–10:11. https://doi.org/10.1145/2618243.2618255

[19] L. Page, S. Brin, R. Motwani, and T. Winograd. 1998. The PageRank citation
ranking: Bringing order to the Web. In WWW. Brisbane, Australia, 161–172.
citeseer.nj.nec.com/page98pagerank.html

[20] Linnea Passing, Manuel Then, Nina Hubig, Harald Lang, Michael Schreier,
Stephan Günnemann, Alfons Kemper, and Thomas Neumann. 2017. SQL-
and Operator-centric Data Analytics in Relational Main-Memory Databases.
In EDBT 2017, Venice, Italy, March 21-24, 2017. OpenProceedings.org, 84–95.
https://doi.org/10.5441/002/edbt.2017.09

[21] Daniel Popovic, Edouard Fouché, and Klemens Böhm. 2019. Unsupervised Artifi-
cial Neural Networks for Outlier Detection in High-Dimensional Data. In ADBIS
2019, Bled, Slovenia, September 8-11, 2019, Proceedings (Lecture Notes in Computer
Science), Vol. 11695. Springer, 3–19. https://doi.org/10.1007/978-3-030-28730-6_1

[22] Maximilian Schüle, Matthias Bungeroth, Dimitri Vorona, Alfons Kemper, Stephan
Günnemann, and Thomas Neumann. 2019. ML2SQL - Compiling a Declarative
Machine Learning Language to SQL and Python. In EDBT 2019, Lisbon, Portugal,
March 26-29, 2019. OpenProceedings.org, 562–565. https://doi.org/10.5441/002/
edbt.2019.56

[23] Maximilian Schüle, Linnea Passing, Alfons Kemper, and Thomas Neumann. 2019.
Ja-(zu-)SQL: Evaluation einer SQL-Skriptsprache für Hauptspeicherdatenbanksys-
teme. In BTW 2019, 4.-8. März 2019, Rostock, Germany, Proceedings. 107–126.
https://doi.org/10.18420/btw2019-08

[24] Maximilian Schüle, Dimitri Vorona, Linnea Passing, Harald Lang, Alfons Kem-
per, Stephan Günnemann, and Thomas Neumann. 2019. The Power of SQL
Lambda Functions. In EDBT 2019, Lisbon, Portugal, March 26-29, 2019. OpenPro-
ceedings.org, 534–537. https://doi.org/10.5441/002/edbt.2019.49

[25] Jun Hyung Shin, Florin Rusu, and Alex Suhan. 2019. Selectivity Computation for
In-Memory Query Optimization. In CIDR 2019, Asilomar, CA, USA, January 13-16,
2019, Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2019/gongshow/
abstracts/cidr2019_82.pdf

[26] Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of Postgres. In
SIGMOD Conference, Washington, DC, USA, May 28-30, 1986. 340–355. https:
//doi.org/10.1145/16894.16888

[27] Thanh Truong and Tore Risch. 2015. Transparent inclusion, utilization, and
validation of main memory domain indexes. In SSDBM ’15, La Jolla, CA, USA,
June 29 - July 1, 2015. ACM, 21:1–21:12. https://doi.org/10.1145/2791347.2791375

[28] Haoyuan Xing, Sofoklis Floratos, Spyros Blanas, Suren Byna, Prabhat, Kesheng
Wu, and Paul Brown. 2018. ArrayBridge: Interweaving Declarative Array Pro-
cessing in SciDB with Imperative HDF5-Based Programs. In ICDE 2018, Paris,
France, April 16-19, 2018. IEEE Computer Society, 977–988. https://doi.org/10.
1109/ICDE.2018.00092

12

https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://www.vldb.org/pvldb/vol10/p1849-aberger.pdf
http://www.vldb.org/pvldb/vol10/p1849-aberger.pdf
https://arxiv.org/abs/1211.5590
http://arxiv.org/abs/1211.5590
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper18.pdf
http://cidrdb.org/cidr2020/papers/p13-brachmann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p13-brachmann-cidr20.pdf
https://doi.org/10.14778/3007263.3007298
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2371045
https://doi.org/10.1145/3335783.3335805
https://doi.org/10.1145/3335783.3335805
http://cidrdb.org/cidr2020/papers/p1-duta-cidr20.pdf
https://doi.org/10.1007/978-3-319-64367-0_4
https://doi.org/10.5441/002/edbt.2016.64
https://doi.org/10.1109/69.273032
https://doi.org/10.1109/69.273032
https://doi.org/10.5441/002/edbt.2019.93
https://doi.org/10.5441/002/edbt.2019.93
http://vldb.org/pvldb/vol5/p1700_joehellerstein_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1700_joehellerstein_vldb2012.pdf
https://doi.org/10.1145/3132847.3133167
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/2618243.2618255
citeseer.nj.nec.com/page98pagerank.html
https://doi.org/10.5441/002/edbt.2017.09
https://doi.org/10.1007/978-3-030-28730-6_1
https://doi.org/10.5441/002/edbt.2019.56
https://doi.org/10.5441/002/edbt.2019.56
https://doi.org/10.18420/btw2019-08
https://doi.org/10.5441/002/edbt.2019.49
http://cidrdb.org/cidr2019/gongshow/abstracts/cidr2019_82.pdf
http://cidrdb.org/cidr2019/gongshow/abstracts/cidr2019_82.pdf
https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/2791347.2791375
https://doi.org/10.1109/ICDE.2018.00092
https://doi.org/10.1109/ICDE.2018.00092

	Abstract
	1 Introduction
	2 Related Work
	2.1 Code Generation within Database Systems
	2.2 Data Processing Tools
	2.3 Lambda Functions in SQL

	3 The PostgreSQL Database System
	3.1 Stages of Query Execution
	3.2 Functions and Table Functions
	3.3 Important Data Structures
	3.4 Extensions and the Function API
	3.5 JIT Compilation
	3.6 Expression Evaluation

	4 High-Level Concept
	4.1 Lambda Function Definitions
	4.2 Passing Input Data to Table Functions
	4.3 Efficient Lambda Evaluation
	4.4 Table Function Design
	4.5 Dynamic Row Types

	5 Lambda Integration
	5.1 Parser and Analyser Extensions
	5.2 Planner Adjustments
	5.3 Executor Stage
	5.4 Lambda Function Evaluation

	6 Table Function Implementations
	6.1 Labelling
	6.2 PageRank
	6.3 k-Means Clustering

	7 Evaluation
	7.1 Data Sets
	7.2 Test Environment
	7.3 Varying the Input Size
	7.4 Multi-Threading Tests

	8 Conclusion
	References

