LingoDB-CT: Understanding LingoDB’s Inner Workings

Michael Jungmair
jungmair@in.tum.de
Technical University of Munich
Germany

Abstract

While compiling query engines can be highly efficient, especially
for complex queries, they also have the reputation of being too
difficult to understand, debug, and profile. However, this is not
necessarily the case if supported by the right architecture and tools.

With this demonstration, we want to show this for our own
compiling query engine LingoDB. For this purpose, we built an
instrumentation and visualization framework called LingoDB-CT,
which aggregates data from multiple angles and visualizes it to
reveal the bigger picture. Through two interactive demonstration
scenarios, using publicly hosted web applications, we show that
LingoDB is indeed easy to understand and profile.

CCS Concepts

« Information systems — Database query processing.

Keywords
Understanding, Profiling, Query Optimization, Query Compilation

ACM Reference Format:

Michael Jungmair. 2025. LingoDB-CT: Understanding LingoDB’s Inner
Workings. In Companion of the 2025 International Conference on Management
of Data (SIGMOD-Companion °25), June 22-27, 2025, Berlin, Germany. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3722212.3725111

1 Introduction

Around 15 years ago, compiling SQL queries into efficient machine
code emerged as a new approach to query execution [7]. By avoid-
ing virtual function calls and keeping values in CPU registers across
relational operators, this approach delivers great performance, es-
pecially for complex expressions and queries [5]. Additionally, they
have a fundamental advantage, as they can, in principle, inline
and fuse machine code also for user-defined code. However, in
both academia and industry, compiling query engines are often
regarded as difficult to understand, debug, and profile. Thus, many
modern query engines opt for vectorized query execution [1]. We
argue, however, that query compilation can be both understandable
and maintainable with appropriate design decisions and tooling.
With this paper, we want to demonstrate this for our own, open-
source compiling query engine LingoDB [3]. LingoDB shares many
properties with pioneering compiling systems like Hyper [4] and
Umbra [8] but also differs in three main aspects that improve un-
derstandability and maintainability:

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGMOD-Companion °25, Berlin, Germany

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1564-8/2025/06

https://doi.org/10.1145/3722212.3725111

Lightweight
Tracing

/ Compilation
’ Layer —
‘d Snapshots II —
\ — -

perf record

LingoDB-CT Computed Image

Figure 1: Like in computer-tomography, LingoDB-CT collects
information from different angles about the compilation and
execution of a query. Later, this information is correlated to
form a more comprehensive picture.

(1) LingoDB employs a form of layered query compilation with
explicit layers (at the cost of small latency increases).

(2) It builds on top of MLIR [6], a high-level compiler framework,
in addition to using LLVM for machine code generation.

(3) Query optimization is implemented as a set of compiler
passes, not as a separate component.

First, using a layered approach allows for examining the compilation
at multiple levels of abstraction. Second, using MLIR not only saves
a lot of reimplementation effort, but also allows us to build on top
of existing mechanisms, e.g., to track provenance of operations in
the form of source information. Finally, since query optimization
is also part of the compilation stack, we can leverage the same
tooling to understand the transformations performed as part of
query optimization, which are often hard to understand, even in
non-compiling query engines.

To leverage these architectural advantages in practice, we devel-
oped LingoDB-CT, an instrumentation and visualization framework
for LingoDB to record and visualize its behavior in both the query
optimization and compilation phase, as well as the query execution
phase. As sketched in Figure 1, it works for LingoDB similarly as a
computer-tomograph (CT) works for scanning human bodies. First,
the behaviour of the subject under test (in our case LingoDB during
query processing) is recorded from different angles (in our case:
different metrics, traces, and profiles). Afterward, the recorded data
is correlated and assembled to get a picture of the subject’s inside.

In this demonstration, we will showcase LingoDB-CT’s capabil-
ities for two scenarios: (1) Quickly understanding how LingoDB
optimizes and compiles SQL queries. (2) Investigating performance
issues by looking at the same time at query optimization, query
compilation, and query execution. Both scenarios will be fully in-
teractive, relying on publicly hosted web applications.

https://orcid.org/0000-0003-0890-1914
https://doi.org/10.1145/3722212.3725111
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3722212.3725111

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

CT data

Lowering 1

Lowering 2
o e

)

cardinalities

Figure 2: In addition to the normal optimization and com-
pilation process of LingoDB (thick lines), LingoDB-CT adds
several instrumentations and runs to collect a set of corre-
lated (dotted lines) CT data.

2 Demonstration System Overview

LingoDB is a modern, compiling query engine built on top of the
high-level compiler framework MLIR [6]. MLIR aims to simplify
the development of layered, domain-specific compilers by offering
a generic framework that can be extended with custom types, op-
erations and compiler passes. As shown in Figure 2, LingoDB first
parses queries (1) into a high-level intermediate representation (IR)
based on MLIR. Next, LingoDB performs query optimization (2)
by applying a set of compiler passes to the IR to perform pattern-
based simplifications as well as cost-based operator reordering and
unnesting of correlated sub-queries. The relational operators (i.e.,
corresponding to a physical plan) are then (3) lowered to declarative
sub-operators [2] that are simpler but enable high-level optimiza-
tions such as auto-parallelization of queries. Afterward, additional
lowering passes (4) transform sub-operators into imperative opera-
tions that are progressively lowered until a low-level IR is reached.
Then, LLVM IR is produced from the low-level IR (5), which is then
compiled to machine code using LLVM (6) and finally executed.
Building on top of MLIR offers two main advantages that, by
design, help with understanding the optimization and compilation
process: (1) MLIR supports dumping the current IR at any stage of
the compilation pipeline into a human-readable textual serializa-
tion format. Additionally, the text format can be reparsed into IR,

Michael Jungmair

1: opa, ((z+1).mlir:1)
2: 0pa, ((z+1).mlir:2)
3: opy((z+1).mlir:3)

snapshot /

1 Opa, (z.mlir:1)
opa(z.mlir:1) L opa (zmiir1)

opy(z.mlir:2)

opy (z.mlir:2)

\hl]ﬂphhf)/

Transformation:

1: OPa a aqy s a .

2. Uj)[OPa 72 0Py OPaz 1: opa, (z.mlir:1)
- 2: Opa, (z.mlir:1)
x.mlir 3: opy(z.mlir:2)

(x+1).mlir

Figure 3: Snapshotting Process

and compilation can be resumed. (2) By enforcing location informa-
tion for operations, MLIR paves the way for correlating operations
across different stages of the compilation pipeline.

2.1 Instrumentation

As sketched in Figure 2, LingoDB-CT collects (8) different kinds of
data that can later be post-processed and visualized. Some of the col-
lected data give more insight into the optimization and compilation
process of LingoDB (&3+&,). On the other hand, other data (Z=+L)
allows for insight into the performance characteristics of the actual
query execution. However, because of our setup, all collected data
is correlated, thus allowing us to gain a unique, unified overview
of query optimization, query compilation and query execution.

2.1.1 @ Snapshots of MLIR Modules. The most critical instrumen-
tation performs snapshots of the MLIR module after every compiler
pass throughout the optimization and lowering phase (S). For each
snapshot, the MLIR module is written to a new text file, including
the current location information (e.g., source file, line) attached to
each operation. Next, the new text file’s name and line numbers
are used to update the location information for all operations.

Figure 3 sketches this for a (x + 1)th pass rewriting op, into opg,
and opg, Before the pass, the operations are tagged with location
information pointing to the last snapshot file x. mlir. These loca-
tions remain valid and are also tracked for rewritings until the next
snapshot that writes to x+1.mlir.

2.1.2 @ Extracting actual cardinalities. Generated query plans can
often be inefficient due to mismatches between estimated and ac-
tual cardinalities. Thus, examining actual cardinalities is important
for profiling queries. We extract the actual cardinalities by taking
the IR corresponding to the physical plan, instrumenting it with
cardinality operators (®), and executing it. This way, we can avoid
any overhead for query processing and bloat in the main codebase,
but still extract cardinalities that can be matched to the original IR.

2.1.3 L Execution backend for Profiling. For LingoDB-CT, we added
a profiling execution backend to LingoDB based on LLVM and perf.
This backend adds debug information to the generated LLVM IR
based on the MLIR location information @ Then, LLVM compiles
the IR into a dynamic library with debug info, which is loaded into
the current process. Before executing the generated code, perf
record is started to profile the current process and is stopped after
the execution finishes. The obtained perf trace is post-processed

LingoDB-CT: Understanding LingoDB’s Inner Workings

N Materialize
Output:

Thead 0

Thread 1

us_ step:2ms
Step (locatio

[oetioca.ableScan 0 —tablescan 0

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

nopl 0x0(%rax,%rax,1)

.6% cmp_%rax, %rld.
5.3% mov (%rl2,%rl4,4),%ebx!
b.s% imul %rdx,S%rbx
5.1% cmp %rl5, srbx

ms _step:2ms

Thread 2

Comparisons:

ders:o_orderkey=lineitem:{_orderkey

X HashJoin
Condition:
g ameaam

Tk TSk
o Selection

o Selection
orders::o_orderdate<1995-03-15 lineitem:{_shipdate>1995-03-15

| |

= orders

= lineitem
Table Size: 1500000

Table Size: 6001215 1% show Execution Only

m 1 ‘ | | 3.2% mov 0x20(%rsp),%rdi
T3 ! movslq_(rdx,%ori4,4) %orl3
1 ‘ . 1 | 2.9% movabs $0x9e3779b97f4a7c55
Thiead 4 — 1.7% mov %rl3,%rax
? 1 ‘ I | 2.0% imul %rdx,%rax
Thread 5 1.1% mov %rax,%rbp
joet] 1 ‘] | 1.6% bswap %rbp
Thead 6 - [12% Xor %rax,%rbp
joet... | I | 1.3% mov 0x10(%rsp),%rax

1.3% mov (%rax,%rld,d) ,%eax

y

(a) Plan Viewer (3+@,) (b) SubOp Viewer (&) (c) Trace Viewer (=) (d) Assembly Viewer (L)
subop.execution_step %8, %1 : !subop.heap< call
%5 = relalg.join %3, %4 (%arg0: 'tuples.tuple){ : !db.date<day>, o_shippriority$0 : i32]>){ %39 = call
%true = arith.constant %10 = subop.scan_refs %arg0 : lsubop.heap %40 = call (%39)

tuples.return %true : i1
} attributes {cost = ,impl=
%6 = relalg.topk 10 %5 [(@orders::@o_orderdate,asc)]
%7 =relalg.materialize %6 [@lineitem::@|_orderkey,@ord }

%11 =subop.gather %10 @scan::@ref {me|
subop.materialize %11 {@lineitem::@|_orde
subop.execution_step_return

%41 = util.buffer_cast %40 : <i8> -> <tuple<i32, i64, i32>>
%42 = util.buffer_getlen %41 : <tuple<i32, i64, i32>>
scf.for %arg0 = %c0 to %42 step %c1 {

%57 = util.buffer_getelementref %41[%arg0] : <tuple<i32, if

(e) MLIR: Relational Operators ([23)

(f) MLIR: Sub-Operators (I23)

(g) MLIR: Imperative Operations ({23)

Figure 4: Frontend components with the origin of their data indicated. Selecting an operation in one component (e.g., TopK

operator), automatically highlights corresponding operations in other components

with perf annotate to obtain assembly instructions with the num-
ber of perf events and the source location, and perf report to
create a summary showing where time is spent globally.

2.14 == Lightweight Traces. The previous instrumentations allow
for gaining overview of the compilation process and identifying
performance bottlenecks. To further gain a temporal understanding
of the query execution, we added a lightweight tracing mechanism
to LingoDB. By following a design originally implemented in Umbra,
we can avoid overheads by materializing events into thread-local
buffers without contention. After the query was executed, all events
(containing start timestamp, duration, event type, and optional
metadata) are written to a JSON file (7).

2.2 Frontend Components

Collecting metrics, as just discussed, is necessary, but not sufficient
for gaining useful insights, as visualization matters a lot in practice.
In our experience good visualizations abstract away from details
while allowing users to dive deeper if necessary, and allow for cor-
relating different views to investigating the same aspect in different
views. Thus, we implemented custom components that allow for
selecting operations in one component and highlighting related
operations in others.

Plan Visualizations. Although MLIR’s text format is human-read-
able, it quickly becomes verbose and hard to understand, especially
for higher-level representations. We thus implemented a compo-
nent shown in Figure 4a that renders IR snapshots & corresponding
to a physical plan into an easily understandable visual representa-
tion. Operators are represented by white nodes containing operator
names and additional information such as table names or predicates.
The width of edges connecting the operators roughly resembles the

estimated cardinalities of tuples following this edge. If actual cardi-
nalities @ are known, an additional, half-transparent, differently
colored edge is added to quickly show discrepancies in the estimates.
Additionally, we developed a slight variant of this component for
the Sub-Operator Layer as displayed in Figure 4b.

Trace Viewer. To visualize the temporal aspect of execution, we
built a custom trace viewer component to display the collected
traces == as shown in Figure 4c. Besides scrolling and zooming, it
also supports clicking on events to select corresponding operations.

MLIR Source Viewer. Existing syntax highlighting libraries do
not fully work for MLIR, as MLIR’s syntax is operation-specific. We
thus built a custom component that renders pre-tokenized MLIR
modules that are produced ahead of time from the snapshots &3
and allows for selecting and highlighting operations.

Perf Assembly Viewer. Finally, we implemented a rendering of an-
notated assembly code L for generated code as shown in Figure 4d.
It quickly shows the bottlenecks by using a darker background
color for busy instructions, and again supports clicking on and
highlighting of instructions.

3 Demonstration Proposal

This section walks through the demonstration of LingoDB-CT with
the help of Alice and Bob, two imaginary users. Alice is interested
in LingoDB and wants to understand (Scenario 1) how LingoDB
works under the hood for certain queries (e.g., to onboard herself as
a developer or evaluate it for advanced use cases). Bob is a system
developer working on LingoDB who frequently needs to investigate
performance issues.

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

3.1 Scenario 1: Understanding LingoDB

In order to understand how LingoDB works, Alice visits the publicly
hosted LingoDB web interface at lingo-db.com/interface . Initially,
the web interface displays a SQL editor, as well as buttons for
executing the SQL, selecting a dataset (one of TPC-H, TPC-DS, JOB,
educational sample database), and populating the SQL editor with
a benchmark query. Alice can now explore how LingoDB works
under the hood interactively, without needing to install anything:

(1) Alice enters a SQL query or selects one of the benchmarking
queries. Optionally, she can also tick a checkbox to retrieve
actual cardinalities.

(2) After pressing the Execute Query button, the query is exe-
cuted on a remote virtual machine and the query result with
execution and compilation times is displayed below.

(3) If Alice wants to know more about the optimization and com-
pilation process, she can now click on the Query Plan tab.
This invokes an additional run on the remote machine with
some of the instrumentations described above. After a few
seconds, the query plan is rendered, as shown in Figure 4a.

(4) Alice is now interested in how one of the operators is imple-
mented (e.g., a TopK operator). She clicks on the operator
which then turns yellow.

(5) Now, she can click on other tabs to view the Sub-Operator
plan or the textual MLIR representations where the opera-
tions corresponding to the selected TopK operator are high-
lighted, as shown in Figure 4b and Figure 4e,4f,4g. This way,
she can now understand how the TopK operator is imple-
mented.

Of course, Alice can also click on lower-level operations to investi-
gate which higher-level operations (e.g., relational operator) they
belong to.

3.2 Scenario 2: Investigating Performance
Issues in LingoDB

For the second scenario, we assume that Bob has been assigned
a slow query and needs to identify the underlying performance
problem. He first runs a Python script that executes the query with
snapshotting and instrumentation enabled to generate a ct. json
file. Next, Bob opens the LingoDB-CT web application hosted at
ct.lingo-db.com and uploads the file in the browser.

(1) Bob first looks at the displayed trace (Figure 4c) to quickly
identify if (1) all worker threads are busy and (2) which
execution steps dominate the total runtime.

(2) He then starts investigating suspicious execution steps that
dominate the runtime or are taking longer than expected, by
clicking on them in the trace viewer.

(3) This highlights the corresponding operators in the query
plan rendered in the bottom left. Bob can now take a closer
look at this operator:

(a) Did the query optimizer do a good job here? Or should the
operators have been ordered differently due to incorrectly
estimated cardinalities?

(b) How expensive is the operator supposed to be? Are there
any potentially expensive expressions inside the operator?

Michael Jungmair

(4) If the root cause for the poor performance is still unclear,
Bob can now click on ASM to investigate the generated ma-
chine code annotated by perf. Instructions belonging to the
current operator are again highlighted as shown in Figure 4d.

(5) For a more detailed analysis, Bob can also switch to the sub-
operator view and examine the generated machine code for
each sub-operator.

(6) If Bob finds an unusually busy instruction, he clicks on it
to select it and quickly looks at the other layers to find the
corresponding operations.

(7) If there is still no clear explanation, Bob can also look at the
integrated perf summary which lists (kernel) functions and
the percentage of execution time.

Once Bob has found and selected a suspicious operation, he can
now trace its origin back by clicking on Diff.

(7) The web application then displays two MLIR modules side-
by-side. On the right, the IR containing the selected operation
(highlighted) is displayed. On the left, the snapshot taken
before the one on the right is shown, with the corresponding
operations being highlighted.

(8) Bob looks at both highlighted regions. If the left side is al-
ready not as expected, Bob continues navigating to the pre-
vious snapshot while the corresponding operations remain
highlighted.

(9) Once he notices a meaningful change (i.e., left side is correct,
right suboptimal), he has identified a sub-optimal pass that
can be debugged in isolation.

Acknowledgments

We thank Google for their support in the form of a PhD Fellowship.
We also thank Tobias Schmidt, Maximilian Reif, and Altan Birler
for their valuable feedback.

References

[1] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR. www.cidrdb.org, 225-237.

[2] Michael Jungmair and Jana Giceva. 2023. Declarative Sub-Operators for Universal
Data Processing. Proc. VLDB Endow. 16, 11 (2023), 3461-3474.

[3] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an Open Frame-
work for Query Optimization and Compilation. Proc. VLDB Endow. 15, 11 (2022),
2389-2401.

[4] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In ICDE. IEEE
Computer Society, 195-206.

[5] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter A. Boncz. 2018. Everything You Always Wanted to Know About Compiled
and Vectorized Queries But Were Afraid to Ask. Proc. VLDB Endow. 11, 13 (2018),
2209-2222.

[6] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques A. Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In CGO. IEEE, 2-14.

[7] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539-550.

[8] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

https://www.lingo-db.com/interface
https://ct.lingo-db.com

	Abstract
	1 Introduction
	2 Demonstration System Overview
	2.1 Instrumentation
	2.2 Frontend Components

	3 Demonstration Proposal
	3.1 Scenario 1: Understanding LingoDB
	3.2 Scenario 2: Investigating Performance Issues in LingoDB

	Acknowledgments
	References

