
1 Overview and Hello World

1.1 Organization

[Slide 2] Module “Concepts of C++ Programming” (CIT323000)

Goals
• Write good and modern C++ code
• Apply widely relevant C++ constructs
• Understand some advanced language concepts

Non-Goals
• Become experts in C++
• Fancy language features
• Apply involved optimizations

Prerequisites
• Fundamentals of object-oriented programming EIDI, PGdP
• Fundamentals of data structures and algorithms GAD
• Beneficial: operating systems, computer architecture GBS, ERA

This lecture assumes knowledge of imperative and object-oriented programming lan-
guages like Java (e.g., for loops, classes, visibility, inheritance, polymorphism).

[Slide 3] Lecture Organization

• Lecture: Mon 14:30 – 17:00, MW 0001
– Lecturer: Dr. Alexis Engelke engelke@in.tum.de
– Live stream and recording via RBG: https://live.rbg.tum.de/
– Tweedback for questions during lecture

• Exercises: Tue 14:15 – 15:45, Interims II HS 3
– Florian Drescher, Mateusz Gienieczko

• Material: https://db.in.tum.de/teaching/ws2425/cpp/
• Zulip-Streams: #CPP, #CPP Homeworks, #CPP Random/Memes
• Exam: written exam on your laptop, on-site, 90 minutes

– Open book, but no communication/AI tools allowed
– Same submission system as for homework

[Slide 4] Homework

• 1–2 programming tasks as homework every week

1

https://live.rbg.tum.de/
https://db.in.tum.de/teaching/ws2425/cpp/

1 Overview and Hello World

– Released on Monday, deadline next Sunday 11:59 PM
• Automatic tests and grading, points only for completely solved tasks

– Typically all1 tests provided with the assignment
• Container environment provided, no support for other setups
• Submission via git+ssh only
• Grade bonus: 0.3 for 75% of exercise points

– Applies only for the main exam, not for the retake
• Cheating in homework ⇝ 5.0U in final grade

[Slide 5] Literature

Primary
• C++ Reference Documentation. (https://en.cppreference.com/)
• Lippman, 2013. C++ Primer (5th edition). Only covers C++11.
• Stroustrup, 2013. The C++ Programming Language (4th edition). Only covers

C++11.
• Meyers, 2015. Effective Modern C++. 42 specific ways to improve your use of

C++11 and C++14..
Supplementary

• Aho, Lam, Sethi & Ullman, 2007. Compilers. Principles, Techniques & Tools (2nd
edition).

• Tanenbaum, 2006. Structured Computer Organization (5th edition).

1.2 Introduction

[Slide 6] What is C++?

• Multi-paradigm general-purpose programming language
– Imperative programming
– Object-oriented programming
– Generic programming
– Functional programming

• Key characteristics
– Compiled
– Statically typed
– Facilities for low-level programming

[Slide 7] Some C++ History

Initial development
• Bjarne Stroustrup at Bell Labs (since 1979)

1We may add extra cases to prevent hard-coding of test cases.

2

https://en.cppreference.com/

1.2 Introduction

– Originally “C with classes”, renamed in 1983 to C++
• In large parts based on C
• Inspirations from Simula67 (classes) and Algol68 (operator overloading)
• Initially developed as a C++-to-C converter (Cfront)

First ISO standardization in 1998 (C++98)
• Further amendments in following years (C++03/11/14/17/20)
• Current standard: C++23

[Slide 8] C++ Standard vs. Implementations

• C++ standard specifies requirements for C++ implementations about language
features and standard library

• “Implementation” consists of: compiler, standard library impl, OS, . . .
• Some things are specified rigidly in the standard
• Some things are implementation-defined

– Standard specifies options, implementation chooses one and documents that
– Example: size of an int

• Implementations can offer extensions2

Typically, implementations of the C++ compiler, the C++ standard library, the
underlying C standard library, and the operating system are separated. Obviously,
only few combinations are supported, but some compilers like Clang support using
different standard library implementations (e.g. with -stdlib=libc++).

• Popular C++ compilers: Clang, GCC, MSVC, EDG eccp (used as foundation
for some other commercial compilers)

• Popular C++ standard library implementations: libstdc++ (GNU), libc++
(Clang/LLVM project), MSVC STL (Microsoft)

• Popular C standard library implementations: glibc (GNU), Microsoft CRT,
(musl, does not support C++)

[Slide 9] Why Study C++?

• Performance
– Very flexible level of abstraction
– Direct mapping to hardware capabilities easily possible
– Zero-overhead rule: “What you don’t use, you don’t pay for.”

• Scales to large systems (with some discipline)
• Interoperability with other languages, esp. C
• Huge amount of legacy code needs developers/maintainers

– compilers, databases, simulations, . . .

2https://clang.llvm.org/docs/LanguageExtensions.html

3

https://clang.llvm.org/docs/LanguageExtensions.html

1 Overview and Hello World

Studying C++ does not preclude studying other languages. C++ is not the best
or right tool for every job, so you probably want to learn at least half a dozen
programming languages. (My personal picks in 2024 are: C, C++, Python, Rust,
Go, JavaScript.)

Note that there’s no such thing as a “zero-cost abstraction”. They do have cost,
typically during compilation. Some of these “zero-cost” abstractions also have some
run-time cost. For example, the mere possibility of C++ exceptions can prevent
optimizations.

[Slide 10] This Lecture

• Go bottom-up through important language constructs
– Some things (e.g. standard library) appear rather late
– Cyclic dependencies are unavoidable

• Focus: widely used constructs and important cases
– Topic selection based on relevance real-world projects
– Many special cases not discussed, lecture will be inaccurate at times
– Use the C++ reference!

1.3 Hello World!

[Slide 11] Hello World!

#include <print>
int main() {
std::println("Hello␣World!");
return 0;

}

On the command line:
$ clang++ -std=c++23 -o hello hello.cpp
$./hello
Hello World!

[Slide 12] Hello World, explained3

// Make print and println available
#include <print>

// Definition of function main().
// Program execution starts at main.
int main() {
// std:: is a namespace prefix. std is for the C++ standard library
std::println("Hello␣World!");

// End program with exit code 0. (zero = everything ok, non-zero = error)
return 0;

}

3A bit hand-wavy, but we have to start somewhere.

4

1.3 Hello World!

[Slide 13] Program Arguments

• main can take two paramters to hold command-line arguments
– int argc: number of arguments
– char** argv: the actual arguments, ∼array of strings
– First argument is the program invocation itself (e.g., ./hello2)

#include <print>
int main(int argc, char** argv) {
std::println("Hello␣{}!", argv[1]); // DON’T DO THIS
return 0;

}
$ clang++ -std=c++23 -o hello2 hello2.cpp
$./hello2 World
Hello World!
$./hello2
Segmentation fault

The program crashed! A “segmentation fault” is an access to an invalid memory
address that was caught by the operating system. In this case, we accessed the second
element of an array of size 1 (argc is 1). We were luckya and got a crash! Since
there are no bounds checks, something completely different could have happened.

In this example, this might be easy to see, but we will very briefly look at two
important debugging strategies.
aOk, this example will always crash. But regardless, never rely on getting crashes on mistakes.

[Slide 14] Debugging 101

• Pass -g to Clang to enable debug info generation
• Run gdb ./hello2

$ clang++ -g -std=c++23 -o hello2 hello2.cpp
$ gdb ./hello2
(gdb) run
Program received signal SIGSEGV, Segmentation fault.
(gdb) backtrace
// ...
#16 in main (argc=0x1, argv=0x7fffffffe868) at hello2.cpp:3
(gdb) up 16
(gdb) print argc
1
(gdb) quit

To start debugging run the command gdb myprogram. This starts a command-line
interface. Here are some useful commands:

5

1 Overview and Hello World

help Show general help or help about a command.
run Start the debugged program.
break Set a breakpoint. When the breakpoint is reached, the de-

bugger stops the program and accepts new commands.
delete Remove a breakpoint.
continue Continue running the program after it stopped at a break-

point or by pressing Ctrl+C.
next Continue running the program until the next source line of

the current function.
step Continue running the program until the source line changes.
nexti Continue running the program until the next instruction of

the current function.
stepi Execute the next instrution.
print Print the value of a variable, expression or CPU register.
frame Show the currently selected stack frame, i.e. the current

stack with its local variables. Usually includes the function
name and the current source line. Can also be used to
switch to another frame.

backtrace Show all stack frames.
up Select the frame from the next higher function.
down Select the frame from the next lower function.
watch Set a watchpoint. When the memory address that is

watched is read or written, the debugger stops.
thread Show the currently selected thread in a multi-threaded pro-

gram. Can also be used to switch to another thread.
Most commands also have a short version, e.g., r for run, c for continue, bt for

backtrace, etc.
The documentation for gdb can be found here: https://sourceware.org/gdb/

current/onlinedocs/gdb/

[Slide 15] Debugging 102

• Print debugging.
#include <print>
int main(int argc, char** argv) {
std::println("argc={}", argc);
std::println("Hello␣{}!", argv[1]);
return 0;

}
$ clang++ -std=c++23 -o hello2 hello2.cpp
$./hello2 World
Hello World!
$./hello2
Segmentation fault

6

https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/

1.4 CMake

Print debugging is an extremely simple, but also an extremely powerful technique.
I personally use print debugging most of the time and only resort to debuggers like
GDB in complex situations.

[Slide 16] Program Arguments, attempt 2

#include <print>
int main(int argc, char** argv) {
if (argc >= 2)
std::println("Hello␣{}!", argv[1]);

else
std::println("Hi␣there!");

return 0;
}
$ clang++ -std=c++23 -o hello2 hello2.cpp
$./hello2 World
Hello World!
$./hello2
Hi there!

[Slide 17] Compiler Flags

Compiler invocation: clang++ [flags] -o output inputs...

• -std=c++23 — set standard to C++23
– Always specify the version of the C++ standard!

• -g — enable debugging information
• -Wall — enable many warnings
• -Wextra — enable some more warnings

– Always compile with -Wall -Wextra! Warnings often hint at bugs.
• -O0 — no optimization, typically good for debugging
• -O1/-O2/-O3 — enable optimizations at specified level

1.4 CMake

[Slide 18] Build Systems: CMake

• Frequent use of long compiler commands is tedious and error-prone
• Manual work doesn’t scale to larger projects
• Different systems may require different flags
• CMake: build system specialized for C/C++

– Widely used by large projects and supported by many IDEs
• CMakeLists.txt specifies project, files, etc.
• Reference: https://cmake.org/cmake/help/latest/

[Slide 19] CMake Example

CMakeLists.txt:

7

https://cmake.org/cmake/help/latest/

1 Overview and Hello World

Require a specific CMake version, here 3.20 for C++23 support
cmake_minimum_required(VERSION 3.20)
Set project name, required for every project
project(hello2)
We use C++23, basically adds -std=c++23 to compiler flags
set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
Compile executable hello2 from hello2.cpp
add_executable(hello2 hello2.cpp)

On the command line:
$ mkdir build; cd build # create separate build directory
$ cmake ..
$ cmake --build .
$./hello2

[Slide 20] Further CMake Commands and Variables

• add_executable(myprogram a.cpp b.cpp)
Define an executable to be built from the source files a.cpp and b.cpp

• add_compile_options(-Wall -Wextra)
Add -Wall -Wextra to compiler flags

• set(CMAKE_CXX_COMPILER clang++)
Set C++ compiler to clang++

• set(CMAKE_BUILD_TYPE Debug)
Set “build type” Debug (other values: Release, RelWithDebInfo); affects optimiza-
tion and debug info

Variables can be set on the command line invocation of CMake:
cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo

[Slide 21] Overview and Hello World – Summary

• C++ is a compiled, widely-used, multi-paradigm language
• Program execution typically starts at int main()
• Command line arguments accessible via argc/argv
• Basic debugging techniques: GDB and print debugging
• Important compiler options for warnings and optimizations
• Basic usage of CMake for building C++ projects

[Slide 22] Overview and Hello World – Questions

• What are key characteristics of the C++ language?
• Why is C++ one of the most important languages today?
• How to access program arguments?
• What are important flags for compiling C++ code with Clang?
• How to debug a compiled C++ program with GDB?
• What is a segmentation fault?
• What are advantages of using a build system like CMake?

8

2 Basic Syntax and Object Model

[Slide 24] Reminder: C++ Reference

These slides will necessarily be inaccurate or incomplete at times.
Use the reference! https://en.cppreference.com/w/cpp

[Slide 25] Comments1

• “C-style” or “multi-line” comments: /*comment */

• “C++-style” or “single-line” comments: //comment

Example:
/* This comment is unnecessarily

split over two lines */
int a = 42;

// This comment is also split
// over two lines
int b = 123;

2.1 Types

[Slide 26] Fundamental Types2

• void – empty type, has no values
– E.g., used to indicate functions that return no value

• Integer types
– Boolean type: bool (1-bit integer, true/false)
– Integer types: int, long, unsigned long, ...
– Character types: char, char16_t, . . .

• Floating-point types
– float, double, long double

[Slide 27] Integer Types

• Sign modifiers: signed (default), unsigned
• Size modifiers: short, long (≥32 bit), long long (≥64 bit)

1https://en.cppreference.com/w/cpp/comment
2https://en.cppreference.com/w/cpp/language/types

9

https://en.cppreference.com/w/cpp
https://en.cppreference.com/w/cpp/comment
https://en.cppreference.com/w/cpp/language/types

2 Basic Syntax and Object Model

• Keyword: int (optional if modifiers are present)
• Order of keywords is arbitrary

– unsigned long long = long unsigned int long

• Signed integers use two’s complement (since C++20)

By convention, sign modifiers come first, signed is omitted, and int comes last, but
is omitted if a size modifier is present.

[Slide 28] Integer Types: Minimum Width

Canonical Type Specifier Minimum Width Minimum Range

short 16 bit −215 to 215 − 1
unsigned short 0 to 216 − 1

int 16 bit −215 to 215 − 1
unsigned 0 to 216 − 1

long 32 bit −231 to 231 − 1
unsigned long 0 to 232 − 1

long long 64 bit −263 to 263 − 1
unsigned long long 0 to 264 − 1

• Exact width of integer types is not specified by the standard!

[Slide 29] Fixed-Width Integer Types3

• Use fixed-width types from when... a fixed width is required
• #include <cstdint>
• int8_t, int16_t, int32_t, int64_t, uint8_t, uint16_t, uint32_t, uint64_t
• But: optional, only available if supported by implementation

• Guideline: use fixed-width types only when really required
– E.g., data structures where size is important, bitwise operations
– Otherwise, prefer regular integers

Don’t prematurely “optimize” by using small data types, e.g. in data structures.
Modern CPUs are optimized for 32/64-bit arithmetic, and some operations on smaller
data types can even be less efficient.

There are also size_t and ptrdiff_t, which are described in when introducing
pointers later.

3https://en.cppreference.com/w/cpp/types/integer

10

https://en.cppreference.com/w/cpp/types/integer

2.1 Types

[Slide 30] Integer Literals4

• Decimal (42), octal (052), hexadecimal (0x2a), binary (0b101010)

• unsigned suffix: 42u or 42U
• long suffix: 42l or 42L; long long suffix: 42ll or 42LL
• Both suffixes can be combined, e.g. 42ul, 42ull

• Separable by single quotes, e.g. 1’000’000’000ull, 0b0010’1010

Quiz: What is the type of the integer literal 0xdeadcabel?
(Assume 32-bit int, 32-bit long, as on, e.g., Windows)

A. int B. long C. unsigned long D. long long

Fun fact: 0 is technically an octal number.

[Slide 31] Character Types

• Represent character codes and integers
• signed char, unsigned char
• char — implementation-defined whether signed/unsigned!

– Use char only for actual characters, not for arithmetic
• Size: defined as 1 byte
• Size of byte: at least 8 bit5

• For UTF characters: char8_t (C++20), char16_t, char32_t

The signedness of char is platform-dependent. On x86, which always had an instruc-
tion for sign extension (movsx), char tends to be signed. Early ARM processors, in
contrast, did not have an instruction for sign extension, so loading a signed char
from memory required three instructions (load, shift left, arithmetic shift right). To
improve efficiency, it was decided to make char an unsigned data type. When porting
software from x86 to ARM, this occasionally causes problems in practice.

Note that on modern CPUs, the performance difference is very low. Unsigned data
types tend to be slightly more efficient in some cases, but this difference is often
negligible.

Although a char is one byte large, the size of one byte is not specified by the C++
standard and only required to be at least 8 bits. Platforms that use non-8-bit bytes
have become increasingly rare over the past decades, but still exist, e.g. some digital
signal processors (DSPs). (Note that these tend to have no compilers for modern
C++ versions. In practice, programs are almost never tested on platforms where
char is not 8 bits.)

4https://en.cppreference.com/w/cpp/language/integer_literal
5Might change for C++26 to exactly 8 bits; proposal: https://wg21.link/p3477r0

11

https://en.cppreference.com/w/cpp/language/integer_literal
https://wg21.link/p3477r0

2 Basic Syntax and Object Model

[Slide 32] Character Literals6

• E.g. ’a’, ’b’, ’€’
– Any character from the source character set except: ’, \, newline

• Escape sequences, e.g. ’\”, ’\\’, ’\n’, ’\u1234’

• UTF-8 prefix: u8’a’, u8’b’
• UTF-16 prefix: u’a’, u’b’
• UTF-32 prefix: U’a’, U’b’

[Slide 33] Floating-Point Types

• float – usually IEEE-754 32-bit binary format
• double – usually IEEE-754 64-bit binary format
• long double – extended precision, format varies strongly

– Some platforms use 64-bit (like double), e.g. MSVC on x86
– Some platforms use 128-bit, e.g. usually AArch64 (this is typically a softfloat

implementation ⇝ slow)
– On x86, typically 80-bit x87 binary floating-point

• Usual caveats of FP arithmetic apply: infinity, signed zero, NaN

Due to the often lower performance and strongly varying accuracy, long double is
typically only used when the target platform is known and the extra accuracy is
needed.

[Slide 34] Floating-Point Literals7

• Without exponent: 3.1415926, .5
• With exponent: 1e9, 3.2e20, .5e-6

• float suffix: 1.0f or 1.0F
• long double suffix: 42.0l or 42.0L

• Separable by single quotes, e.g. 1’000.000’001, .141’592e12

6https://en.cppreference.com/w/cpp/language/character_literal
7https://en.cppreference.com/w/cpp/language/floating_literal

12

https://en.cppreference.com/w/cpp/language/character_literal
https://en.cppreference.com/w/cpp/language/floating_literal

2.2 Operators

2.2 Operators

[Slide 35] Operator Precedence Table (1)8

Prec. Operator Description Associativity

1 :: Scope resolution left-to-right

2 a++ a-- Postfix increment/decrement left-to-right
<type>() <type>{} Functional Cast
a() a[] Function Call/Subscript
. -> Member Access

3 ++a --a Prefix increment/decrement right-to-left
+a -a !a ˜a plus/minus/logical not/bitwise not
(<type>) C-style cast
*a &a Dereference/Address-of
sizeof Size-of
new new[] Dynamic memory allocation
delete delete[] Dynamic memory deallocation

[Slide 36] Operator Precedence Table (2)

Prec. Operator Description Associativity

4 .* ->* Pointer-to-member left-to-right

5 a*b a/b a%b Multiplication/Division/Remainder left-to-right

6 a+b a-b Addition/Subtraction left-to-right

7 << >> Bitwise shift left-to-right

8 <=> Three-way comparison left-to-right

9 < <= Relational < and ≤ left-to-right
> >= Relational > and ≥

10 == != Relational = and ̸= left-to-right

8https://en.cppreference.com/w/cpp/language/operator_precedence

13

https://en.cppreference.com/w/cpp/language/operator_precedence

2 Basic Syntax and Object Model

[Slide 37] Operator Precedence Table (3)

Prec. Operator Description Associativity

11 & Bitwise AND left-to-right

12 ˆ Bitwise XOR left-to-right

13 | Bitwise OR left-to-right

14 && Logical AND left-to-right

15 || Logical OR left-to-right

16 a?b:c Ternary conditional right-to-left
throw throw operator
= Direct assignment
+= -= *= /= %= Compound assignment
<<= >>= &= ˆ= |= Compound assignment

17 , Comma left-to-right

C++ has a wide range of operators with “typical” semantics and mostly typical
precedence and associativity. Some operators like the comma operator are rarely
used. The left-hand side of an assignment can not only be a variable, but everything
that refers to the identity of an object. This will be covered in more detail when
discussing value types and references.

Note that even if parenthesis can be omitted, it is sometimes useful to use them
anyway for clarity:
// real-world examples from libdcraw
diff = ((getbits(len-shl) << 1) + 1) << shl >> 1; // ???
yuv[c] = (bitbuf >> c * 12 & 0xfff) - (c >> 1 << 11); // ???

2.3 Observable Behavior

[Slide 38] Observable Behavior

Observable behavior of C++ programs precisely defined, unless:

• implementation-defined behavior – documented by C++ implementation
• unspecified behavior – one of multiple options can happen

– E.g., evaluation order of function arguments: one permutation must happen
• program ill-formed – syntax/semantic error, compiler must diagnose
• program ill-formed, no diagnostic required – semantically invalid, hard to diagnose

– Typically not detectable during compilation, not too many cases
• undefined behavior – the standard imposes no requirements

14

2.4 Basic Syntax

[Slide 39] Undefined Behavior9 (UB)

• Some violations of language rules are undefined behavior: standard enforces no
restrictions ⇝ anything can happen

– Typically cases, where checks would be costly or impossible
⇒ A C++ program must never contain undefined behavior!
• Examples: out-of-bounds array access, signed integer overflow, shift by negative

index, shift larger than value size, . . .
– Signed integers: UB on overflow; unsigned integers: well-defined wrap

• Compiler can assume that program contains no undefined behavior10

– Allows for more optimizations, e.g. eliminate some checks

[Slide 40] Undefined Behavior – Example

Quiz: Which answer is correct?
bool f1(int x) { return x + 1 > x; }
bool f2(unsigned x) { return x + 1 > x; }

A. The return value of f1 is always false.
B. The return value of f2 is always true.
C. The return value of f1 depends on the parameter.
D. The return value of f2 depends on the parameter.
E. f2 might invoke undefined behavior.

Compilers regularly make use of the assumption that undefined behavior doesn’t
occur. Compile these functions with optimizations and look at the generated assembly
code.

2.4 Basic Syntax

[Slide 41] Variables11

• Declaration: type specifier followed by declarators (variable names)
• Declarator can optionally be followed by an initializer
• No initializer: default-initialized

– Non-local variables: zero-initialized
– Local variables: not initialized

• Access of uninitialized variable is undefined behavior

void foo() {
unsigned i = 0, j;
unsigned meaningOfLife = 42;

}

9https://en.cppreference.com/w/cpp/language/ub
10https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
11https://en.cppreference.com/w/cpp/language/declarations

15

https://en.cppreference.com/w/cpp/language/ub
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://en.cppreference.com/w/cpp/language/declarations

2 Basic Syntax and Object Model

As the type partly written in the type specifier and partly in the declarator (e.g.,
pointers, references), declaring multiple variables in a single statement is typically
considered as error-prone and therefore avoided.

[Slide 42] Variable Initializers12

• variableName(<expression>)
• variableName = <expression>
• variableName{<expression>} (error on possible information loss)

double a = 3.1415926;
double b(42);
unsigned c = a; // OK: c == 3
unsigned d(b); // OK: d == 42
unsigned e{a}; // ERROR: potential information loss
unsigned f{b}; // ERROR: potential information loss

[Slide 43] Simple Statements13

Declaration statement: Declaration followed by a semicolon
int i = 0;

Expression statement: Any expression followed by a semicolon
i + 5; // valid, but useless
foo(); // valid and possibly useful

Compound statement (blocks): Brace-enclosed sequence of statements
{ // start of block

int i = 0; // declaration statement
} // end of block, i goes out of scope
int i = 1; // declaration statement

[Slide 44] Scope14

Names in a C++ program are valid only within their scope

• The scope of a name begins at its point of declaration
• The scope of a name ends at the end of the relevant block
• Scopes may be shadowed resulting in discontiguous scopes (bad practice)

int a = 21;
int b = 0;
{
int a = 1; // scope of the first a is interrupted
int c = 2;
b = a + c + 39; // a refers to the second a, b == 42

} // scope of the second a and c ends
b = a; // a refers to the first a, b == 21
b += c; // ERROR: c is not in scope

12https://en.cppreference.com/w/cpp/language/initialization
13https://en.cppreference.com/w/cpp/language/statements
14https://en.cppreference.com/w/cpp/language/scope

16

https://en.cppreference.com/w/cpp/language/initialization
https://en.cppreference.com/w/cpp/language/statements
https://en.cppreference.com/w/cpp/language/scope

2.4 Basic Syntax

[Slide 45] If Statement15

• Conditionally execute another statement
• Condition converted to bool decides which branch is taken
• Optional initialization statement
• Optional else branch

if (value < 42)
valueLessThan42();

else
valueTooLarge();

if (unsigned n = compute(); n > 4) {
// do something

}
// The latter is equivalent to:
{
unsigned n = compute();
if (n > 4) {
// do something

}
}

The condition can also be a simple declaration, in which case the condition is whether
the assigned variable converted to bool is true. Examples:
if (unsigned n = compute()) {
// do something if n != 0

}
if (unsigned a = compute(0); unsigned b = compute(a)) {
// do something if b != 0

} else {
// can also use a and b here

}

[Slide 46] If Statement Nesting

• else is associated with the closest if that has no else

// INTENTIONALLY BUGGY!
if (condition0)
if (condition1)
// do something if (condition0 && condition1) == true

else
// do something if condition0 == false

• When in doubt, use curly braces to make scopes explicit
// Working as intended
if (condition0) {
if (condition1)
// do something if (condition0 && condition1) == true

} else {

15https://en.cppreference.com/w/cpp/language/if

17

https://en.cppreference.com/w/cpp/language/if

2 Basic Syntax and Object Model

// do something if condition0 == false
}

[Slide 47] Switch Statements16

• Conditional control flow transfer based on integral type
• Constant values for case, must be unique
• break exits switch
• Implicit fallthrough!

– Use [[fallthrough]]; when intended
• Condition can have declaration

switch (compute()) {
case 42:
// do something for 42
break;

case 20:
// do something for 20
[[fallthrough]];

case 21:
case 22:
// do something for 20/21/22
break;

default:
break;

}

[Slide 48] While and Do-While Loops

• while:17 repeatedly execute statement while condition is true
unsigned i = 42;
while (i < 42) {
// never executed

}

• do–while:18 like while, but execute body at least once
unsigned i = 42;
do {
// executed once

} while (i < 42);

• break/continue to exit loop/skip remainder of body

[Slide 49] For Loops19

for (unsigned i = 0; i < 10; ++i) {
// iterate 0, 1, 2, ..., 9

}
for (unsigned i = 0, len = getLength(); i != len; ++i) {

16https://en.cppreference.com/w/cpp/language/switch
17https://en.cppreference.com/w/cpp/language/while
18https://en.cppreference.com/w/cpp/language/do
19https://en.cppreference.com/w/cpp/language/for

18

https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/while
https://en.cppreference.com/w/cpp/language/do
https://en.cppreference.com/w/cpp/language/for

2.4 Basic Syntax

// do something; doesn’t call getLength() every iteration
}
for (unsigned i = 42; i-- > 0;) {
// iterate 41, 40, ..., 0

}
uint8_t i = 0;
for (; i < 256; ++i)
std::println("{}", i); // hmmm....

Quiz: What could be a problem of the last loop?
A. No Problem B. Syntax Error C. Endless Loop D. Undefined Behavior

Beware of integer overflows. Reminder: signed integer overflow is undefined behavior.

[Slide 50] Basic Functions20

• Associate a sequence of statements (body) with a name
• Function can have parameters and a return type (can be void)
• Non-void functions must execute return statement
• Arguments are passed by value (unlike Java for classes)

– Pass-by-reference requires explicit annotation, see later

void procedure(unsigned parameter0, double parameter1) {
// do something with parameter0 and parameter1

}
unsigned meaningOfLife() {
// complex computation, takes 7.5 million years
return 42;

}

[Slide 51] Basic Function Arguments

• Parameters can be unnamed ⇝ unusable, but still required on call
• Function can specify default arguments21 in parameter list

– After first param with default value, all must have a default value

unsigned meaningOfLife(unsigned /*unused*/) {
return 42;

}
unsigned addNumbers(int a, int b = 2, int c = 3) {
unsigned v = meaningOfLife(); // ERROR: expected argument
unsigned w = meaningOfLife(123); // OK
return a + b + c;

}
int main() {
int x = addNumbers(1); // x == 6
int y = addNumbers(1, 1); // y == 5
int z = addNumbers(1, 1, 1); // z == 3

}

20https://en.cppreference.com/w/cpp/language/function
21https://en.cppreference.com/w/cpp/language/default_arguments

19

https://en.cppreference.com/w/cpp/language/function
https://en.cppreference.com/w/cpp/language/default_arguments

2 Basic Syntax and Object Model

2.5 Namespaces

[Slide 52] Namespaces22

• Large projects contain many names ⇝ organize in logical units
• namespaces allow preventing name conflicts

namespace A {
void foo() { /* do something */ }
void bar() { foo(); /* refers to A::foo */ }
} // end namespace A
namespace B {
void foo() { /* do something */ }
} // end namespace B
int main() {
A::foo(); // qualified name lookup
B::foo(); // qualified name lookup
foo(); // ERROR: foo was not declared in this scope

}

Typically, the outermost namespace is used for the project name (e.g., llvm, clang,
umbra). The namespace std is reserved for the C++ standard library. This prevents
name collisions when using libraries.

This has a big advantage over the C convention of using prefixes in names (e.g.,
LLVM<name> or stdc_<name>): inside namespaces, typing the redundant prefix can
be avoided and namespaces can be imported with a using namespace directive (see
below).

[Slide 53] Namespace Nesting

• Namespaces can be nested
namespace A {
namespace B {
void foo() { /* do something */ }
} // end namespace B
} // end namespace A

// equivalent definition
namespace A::B {
void bar() { foo(); /* refers to A::B::foo */ }
} // end namespace A::B

int main() {
A::B::bar();

}

[Slide 54] Namespaces: using and Conventions

• Typically: add comments to closing namespace brace
• Always using fully qualified names makes code easier to read

22https://en.cppreference.com/w/cpp/language/namespace

20

https://en.cppreference.com/w/cpp/language/namespace

2.6 Memory & Object Model

• But: sometimes, source is obvious and typing cumbersome...
– using namespace X; imports everything from X
– using X::a; imports only a from X

namespace A { int x; }
namespace B { int y; int z; }
using namespace A;
using B::y;
int main() {
x = 1; // Refers to A::x
y = 2; // Refers to B::y
z = 3; // ERROR: z was not declared in this scope
B::z = 3; // OK

}

Be careful about using namespace, this might pollute your namespace and result in
unwanted naming collisions. You can also use using declarations inside a scope like
this:
namespace A { int x; }
namespace B { int y; int z; }
int main() {
using namespace A;
using B::y;

x = 1; // Refers to A::x
y = 2; // Refers to B::y
z = 3; // ERROR: z was not declared in this scope
B::z = 3; // OK

}

2.6 Memory & Object Model

[Slide 55] Memory Model

• Fundamental storage unit: byte
– There can (theoretically) be more than 8 bits in a byte

• Memory consists of one or more contiguous sequences of bytes
– Memory can have holes, e.g. due to virtual memory

• Every byte has a unique address

[Slide 56] Objects23

• Object: region of storage; properties:
– Size (see next slides)
– Alignment (see next slides)
– Storage duration (see next slides)
– Lifetime (see next slides)

23https://en.cppreference.com/w/cpp/language/object

21

https://en.cppreference.com/w/cpp/language/object

2 Basic Syntax and Object Model

– Type
– Value
– Optionally: name

• C++ programs create, destroy, refer to, access, and manipulate objects
• Examples for objects: local/global variables, parameters

– Not objects: functions, references, values

[Slide 57] Object Size and Alignment

• Size and alignment requirements are defined by the type
• sizeof operator24: query size in bytes of object/type

– sizeof(char) = sizeof(std::byte) = 1
– All other sizes implementation-defined

• alignof operator25: query minimum alignment in bytes of type
– Depending on implementation, some values must be aligned in memory
– Alignment is always a power of 2
– Address must be a multiple of the alignment

Bytes that are larger than the industry standard of 8 bits are very rare, but do exist.
Some embedded platforms, where the smallest possible memory access granularity is
32 bits, use 32-bit bytes. On such platforms, sizeof(int) can be 1.

An alignment of x means that the address of the object is a multiple of x. The
size is always a multiple of the alignment.

[Slide 58] Storage Duration26

• Every object has a storage duration

Storage Duration Begin End Note/Example

automatic Scope begin Scope end Local variables

static Program begin Program end Global variables

thread Thread start Thread end thread_local vars

dynamic new delete

• Static: allocated/initialized before main in non-guaranteed order27

• Thread: one copy of the object per thread
• Dynamic: allocation/deallocation must be done manually

24https://en.cppreference.com/w/cpp/language/sizeof
25https://en.cppreference.com/w/cpp/language/alignof
26https://en.cppreference.com/w/cpp/language/storage_duration
27https://en.cppreference.com/w/cpp/language/siof

22

https://en.cppreference.com/w/cpp/language/sizeof
https://en.cppreference.com/w/cpp/language/alignof
https://en.cppreference.com/w/cpp/language/storage_duration
https://en.cppreference.com/w/cpp/language/siof

2.6 Memory & Object Model

[Slide 59] Lifetime28

Lifetime of an object...
• starts when it is fully initialized
• ends when destructor called (classes) or storage is deallocated/reused (others)
• never exceeds the lifetime of the storage (see storage duration)

• Using an object outside its lifetime is undefined behavior
• This is a main source of memory bugs
• Compilers can only warn about very basic errors

⇒ If compiler warns, always fix your program

When the compiler warns about a possible lifetime bug, this is most likely a problem
in your code. Again: fix it. There can be very rare occasions where the warning is
a false positive, but in these cases, you should adjust your code nonetheless so that
the warning disappears.

The lifetime of a reference (see later) ends as if it were a scalar object (e.g., int).

[Slide 60] Lifetime: Example

Quiz: When does the lifetime of p end?
int g;
void matterOfLifeOrDeath(unsigned a) {
thread_local int t = 1;
unsigned c = a;
{
unsigned p = a + 1;

}
unsigned m = t - 1;

}

A. At the end of the function.
B. At the end of the innermost block.
C. At the end of the program.
D. When the underlying stack space is reuseed (e.g., for m).

[Slide 61] Lifetime: Example

Quiz: What is problematic about this function?
int fancyZero() { // fancy way to return zero
int x = x ^ x;
return x;

}

A. Ill-formed/compile error: x used before its declaration.
B. Undefined behavior: signed integer overflow.
C. Undefined behavior: x used outside its lifetime.

28https://en.cppreference.com/w/cpp/language/lifetime

23

https://en.cppreference.com/w/cpp/language/lifetime

2 Basic Syntax and Object Model

D. Undefined behavior: x used outside its storage duration.

[Slide 62] Basic Syntax and Object Model – Summary

• Fundamental types: void, integral, floating-point
• Exact width, representation, etc. not specified by standard
• Undefined behavior means anything can happen
• Undefined behavior must therefore never happen
• Basic syntax similar to other C-like languages, with additions
• Use namespaces to avoid naming collisions
• C++ programs resolve around working with objects
• Objects’ lifetime is often implicit, leading to subtle bugs

[Slide 63] Basic Syntax and Object Model – Questions

• What is the required minimum size of an unsigned int?
• Why is arithmetic on char problematic?
• Why is long double rarely used?
• What can happen when undefined behavior is encountered?
• How can compilers use undefined behavior for optimizations?
• Which variable initializer prevents loss of accuracy?
• What is the storage duration of an object?
• What is the relation between storage duration and lifetime?

24

3 Declarations/Definitions, Preprocessor,
Linker

[Slide 65] On “Internet”

Search engines/AI are not your friend when it comes to C++!
Use high-quality sources. Use the C++ reference. Read the script of this lecture.

3.1 Preprocessor

[Slide 66] Compiler: Overview (1)

hello.cpp hellohello.ii
Preprocessor Compiler

clang++ -E -o hello.ii hello.cpp
clang++ -o hello hello.ii

• Preprocessor transforms source code before actual compilation
• clang++ -E – stop after preprocessing

[Slide 67] Preprocessor1

• Applies textual transformation before compilation
– E.g., to conditionally exclude certain code paths from compilation
– Preprocessor has no knowledge about “real” C++ language semantics

• Handles preprocessor directives: lines that begin with #
• Outputs program without directives

Use carefully, avoid if possible!

[Slide 68] Preprocessor: #include2

• #include "path/to/file" – copy content from file at current position
• Literal textual inclusion (“copy-paste”)

1https://en.cppreference.com/w/cpp/preprocessor
2https://en.cppreference.com/w/cpp/preprocessor/include

25

https://en.cppreference.com/w/cpp/preprocessor
https://en.cppreference.com/w/cpp/preprocessor/include

3 Declarations/Definitions, Preprocessor, Linker

//--- magicNumber.inc
42

//--- magicNumber.cpp
int magic =
#include "magicNumber.inc"
;

• After preprocessing

// clang++ -E magicNumber.cpp
int magic =
42
;

[Slide 69] Preprocessor: Include Path

• #include "file"

– Search order: current directory, include path, system path
– Convention: use for files in current project

• #include <file> – search include path, then system path
– Search order: include path, system path
– Convention: use for libraries and system includes

• Compiler flag: -I<directory> – add directory to include path
• CMake: target_include_directories(target PUBLIC src/)
• Typical: add root of project source to include path

⇒ All files can be included by “absolute path”

[Slide 70] Preprocessor: #define3

• #define SOMENAME – define a macro with the given name
• Can have an optional textual replacement
• #undef – undefined previously defined macro

#define EMPTY
#define return never
#define ANSWER 42
#define FUNC_DECL int getAnswer()
#undef return
FUNC_DECL { EMPTY return ANSWER; EMPTY }
// Preprocessed to:
// int getAnswer() { return 42; }

Don’t use the preprocessor like this, this is primarily for illustration.4

[Slide 71] Preprocessor: #define – Example

Quiz: What does the function f return?

3https://en.cppreference.com/w/cpp/preprocessor/replace
4NB: Re-defining keywords is undefined behavior if the standard library is included.

26

https://en.cppreference.com/w/cpp/preprocessor/replace

3.1 Preprocessor

#define ONE 1
#define TWO (ONE + ONE)
#define FOUR TWO+TWO
#define SIXTEEN FOUR*FOUR
int f() { return (SIXTEEN + FOUR) * TWO + TWO; }

A. (compile error) B. 2 C. 26 D. 42
Don’t use the preprocessor like this, this is primarily for illustration.

When placing expressions of any kind in a macro, it is highly recommendable to wrap
them with parenthesis.

[Slide 72] Preprocessor: Pre-defined Macros

• Some macros are pre-defined by the compiler
• Few are standardized, others vary between compilers
• Typically begin with double-underscore

Examples:

• __cplusplus – used C++ standard, e.g. 202302L
• __FILE__ – name of the current file
• __x86_64__ – defined if compiling for x86-64
• Compiler flag -D<macroname>=<expansion> – define a macro with the (optional)

expansion

Typically, many macros are pre-defined to describe the environment. You can use
clang++ -dM -E -x c++ - </dev/null to list all pre-defined macros and their ex-
pansions. (You can use clang++ -- help to understand the supplied command line
flags.)

[Slide 73] Preprocessor: Conditions5 (1)

• #if <expr>/#elif <expr>/#ifdef <macro>/#ifndef <macro>/#else/#endif – con-
ditionally compile part of code

– Use cases: architecture-dependent code, code only for debug builds
• Expressions can use defined(MACRO) to test whether a macro is defined
• Preprocessor expressions only operate on macros!

#if defined(__x86_64__)
// x86-64-specific code goes here
#elif defined(__aarch64__)
// aarch64-specific code goes here
#else
// architecture-independent code goes here
#endif

5https://en.cppreference.com/w/cpp/preprocessor/conditional

27

https://en.cppreference.com/w/cpp/preprocessor/conditional

3 Declarations/Definitions, Preprocessor, Linker

[Slide 74] Preprocessor: Conditions (2)

• #error – cause compilation to fail with given message
#if defined(__x86_64__) || defined(__aarch64__)
// x86-64 and aarch64 code goes here
#else
#error Unsupported architecture!
#endif

#if 0 // #if 0 can be used for comments, can be nested (unlike /* */)
void commentedOut() {}
#if 0
void moreCommentedCode() {}
#endif
#endif

[Slide 75] Preprocessor: Conditions (3)

Quiz: What does the function f return?
int j = 5;
#if j * j == 25
int f() { return j * j; }
#else
int f() { return 20; }
#endif

A. (compile error) B. depends on j C. 20 D. 25
Don’t use the preprocessor like this, this is primarily for illustration.

[Slide 76] Preprocessor: Function-Like Macros

• Macros can have arguments, so they look like functions
• Again, purely textual replacement, no semantics

– Wrap all parameters in parentheses to avoid precedence issues
#define MIN(a,b) ((a)<(b)?(a):(b))

int min3(int a, int b, int c) {
// Preprocessed to:
// return ((((a)<(b)?(a):(b)))<(c)?(((a)<(b)?(a):(b))):(c));
return MIN(MIN(a, b), c);

}
Don’t use the preprocessor like this, this is primarily for illustration.

[Slide 77] Preprocessor: Function-Like Macros (Quiz)

Quiz: Why is this macro problematic?
#define MIN(a,b) ((a) < (b) ? (a) : (b))

A. One parameter is evaluated multiple times.
B. The unnecessary parenthesis make the code difficult to read.
C. The macro doesn’t compute the minimum on unsigned integers.

28

3.2 Assertions

• Don’t do this — we’ll cover modern replacements later

[Slide 78] Preprocessor: Recommendations

Avoid if possible!
• Many pitfalls, code harder to read/analyze/debug
• Many use-cases have modern, safer C++ replacements (see later)

• No rule without exceptions...
• Some older code bases use preprocessor heavily

– Primary reason we cover it so extensively here

• Use constexpr global variables instead of #define BAR 1
• Use type-generic functions for function-like macros
• Use if constexpr () instead of #if/#endif

There are, of course, exceptions to these guidelines. But generally, avoid the use
of the preprocessor and only use it for header guards and header includes.

3.2 Assertions

[Slide 79] Runtime Checks for Debugging: assert

• assert(expr) – abort program if assertion is false
• Use to check invariants
• When NDEBUG is defined, assert generates no code
• CMake automatically defines NDEBUG in release builds

#include <cassert>
double div(double a, int b) {
assert(b != 0 && "divisor␣must␣be␣non-zero");
return a / b;

}

The idiom assert(condition && "explanation") is widely used to add a more
helpful message or reasoning to the assertion. This works, because "strings" always
get converted to a non-zero value (simplified, will be explained later together with
pointers).

[Slide 80] assert – Implementation

• assert(expr) is a preprocessor macro
⇒ Expression gets removed from source code when NDEBUG is defined!

//--- /usr/include/assert.h (glibc) (excerpt) (code simplified for slide)

/* void assert (int expression);

If NDEBUG is defined, do nothing.

29

3 Declarations/Definitions, Preprocessor, Linker

If not, and EXPRESSION is zero, print an error message and abort. */
#ifdef NDEBUG
define assert(expr) ((void)(0))
#else
define assert(expr) ((expr) ? (void)(0) : __assert_fail(#expr, /*...*/))
#endif

#expr is stringifies the parameter expr, which is the string printed to the console
when the assertion fails.

3.3 Declaration & Definitions

[Slide 81] Multiple Source Files

• C++ source files know nothing about each other
– Other than #include, which is just copy-paste

How do they know what functions other files define?

⇝ Explicit declarations

[Slide 82] Declarations6

• Declarations introduce names
• Names must be declared before they can be referenced
• Variables: int x;
• Functions: void fn();
• Namespace: namespace A { }
• Using: using A::x;
• Class: class C;
• . . .

[Slide 83] Definition7

• A declared name can be used, but: most uses require8 a definition
– Reading/writing value or taking address of an object
– Calling or taking address of function

• Most declarations are also definitions, with some exceptions
– Function declaration without body
– Variable declarations with extern and no initializer

6https://en.cppreference.com/w/cpp/language/declarations
7https://en.cppreference.com/w/cpp/language/definition
8Formally called odr-use

30

https://en.cppreference.com/w/cpp/language/declarations
https://en.cppreference.com/w/cpp/language/definition

3.3 Declaration & Definitions

[Slide 84] Function Declarations: Example

• Forward declaration necessary for cyclic dependencies
void bar(int n); // declaration, no definition

void foo(int n) { // declare + define foo
std::println("foo");
if (n > 0)
bar(n - 1); // OK, bar declared above

}

void bar(int n) { // re-declare + define bar
std::println("bar");
if (n > 0)
foo(n - 1); // OK, foo declared above

}

Without the forward declaration of bar, compilation will fail, because bar is not
declared at the function call inside foo.

It is generally advisable to avoid cyclic dependencies.

[Slide 85] Variable Declarations: Example

extern int global; // declaration
int otherGlobal; // declarartion + definition, zero-initialized

int readGlobal() {
return global;

}

int global = 5; // re-declaration + definition

• The first declaration is rather useless, could move definition there

[Slide 86] cv-Qualifier: const and volatile9

• Part of the type, can appear in variable declarations
• const – object cannot be modified
• volatile – object access has a side-effect

– E.g., direct hardware access, communication with signal handlers
void function() {
int a = 4;
const int b = a;
a = 0; // OK
b = 10; // ERROR: assignment of read-only variable
volatile int v = 5; // will not be optimized out

}

9https://en.cppreference.com/w/cpp/language/cv

31

https://en.cppreference.com/w/cpp/language/cv

3 Declarations/Definitions, Preprocessor, Linker

Do not use volatile unless you know that it is strictly require. Do not use volatile
for synchronization across multiple threads!

3.4 Linker

[Slide 87] Compiler: Overview (2) – Multiple Files

hello.cpp hellohello.o
Compiler Linker

world.cpp world.o

clang++ -c -o hello.o hello.cpp
clang++ -c -o world.o world.cpp
clang++ -o hello hello.o world.o

• Compiler generates object file with machine code
– One compile invocation compiles one translation unit
– May contain references to not-yet-defined functions/globals

• Linker combines object files into executable
– Resolve all undefined references

The compiler invocation clang++ -o hello hello.cpp world.cpp internally runs
all steps, but discards the intermediate results. This is impractical, because if
hello.cpp changes but world.cpp did not, both need be recompiled.

Separating the compiler invocations (clang++ -c -o hello.o hello.cpp; clang++
-c -o world.o world.cpp; clang++ -o hello hello.o world.o) allows selectively
rebuilding the parts of the program that changed, significantly reducing the times of
incremental builds. The compiler option -c instructs the compiler to stop after the
compilation and emit an object file (instead of linking an executable).

[Slide 88] Multiple Files

//--- foo.cpp
int globalVar = 7;
int foo() { return 6; }

//--- main.cpp
#include <print>
extern int globalVar;
int foo();
int main() {
std::println("{}", globalVar * foo());
return 0;

}

32

3.5 One Definition Rule

$ clang++ -std=c++23 -c -o foo.o foo.cpp
$ clang++ -std=c++23 -c -o main.o main.cpp
$ clang++ -o main main.o foo.o
$./main
42

Declaration and definitions can be in different files. The compiler needs a declaration
to know that a function/variable will exist, but does not require a definition. The
definition must be supplied at link time.

[Slide 89] Multiple Files: Undefined References

//--- foo.cpp
int bar();
int foo() { return 2 * bar(); }

//--- main.cpp
extern int undefinedGlobal;
int main() {
return undefinedGlobal;

}
$ clang++ -std=c++23 -c -o foo.o foo.cpp
$ clang++ -std=c++23 -c -o main.o main.cpp
$ clang++ -o main main.o foo.o
/usr/bin/ld: main.o: in function ‘main’:
main.cpp:(.text+0x8): undefined reference to ‘undefinedGlobal’
/usr/bin/ld: foo.o: in function ‘foo()’:
foo.cpp:(.text+0x8): undefined reference to ‘bar()’
clang++: error: linker command failed with exit code 1 (use -v to see invocation)

If a global variable or function is referenced, but not defined in any of the object files
(or libraries, including the standard library), the linker will detect this and fail. The
compiler cannot detect this, as it has no knowledge about other object files or used
libraries.

3.5 One Definition Rule

[Slide 90] One Definition Rule (ODR)10

• At most one definition of a name allowed within one translation unit
• Exactly one definition of every used function or variable must appear within the

entire program
• (for more cases, exceptions, subtleties: see reference documentation)

NB: Some ODR violations make programs “ill-formed, no diagnostic required” — only the
linker can diagnose such violations

10https://en.cppreference.com/w/cpp/language/definition#One_Definition_Rule

33

https://en.cppreference.com/w/cpp/language/definition#One_Definition_Rule

3 Declarations/Definitions, Preprocessor, Linker

[Slide 91] One Definition Rule: Examples (Multiple Definitions)

int i = 0; // OK: declaration + definition
int i = 1; // ERROR: redefinition
//--- a.cpp
int foo() { return 1; }

//--- b.cpp
int foo() { return 2; }
clang++ -std=c++23 -c -o a.o a.cpp
clang++ -std=c++23 -c -o b.o b.cpp
clang++ a.o b.o
/usr/bin/ld: foo.o: in function ‘foo()’:
b.cpp:(.text+0x0): multiple definition of ‘foo()’; a.o:a.cpp:(.text+0x0): first defined

here

3.6 Header and Implementation Files

[Slide 92] Header and Implementation Files

• Duplicating declarations into every file technically possible
• But: not maintainable, error-prone

Idea: split into implementation (.cpp) and header (.h) file:
• Header file: just declarations that should be usable in other files

– Conceptually: “API” of logical unit
– Also should include documentation

• Implementation file: definitions for names declared in header
– Conceptually: “implementation” of the API

Use preprocessor to copy-paste declaration

[Slide 93] Header and Implementation Files: Example

//--- sayhello.h
#include <cstdint>
/// Print "Hello!" to standard output.
void sayHello(std::uint64_t number);

//--- sayhello.cpp
#include "sayhello.h"
#include <cstdint>
#include <print>
void sayHello(std::uint64_t number) { std::println("Hello␣{}!", number); }

//--- main.cpp
#include "sayhello.h"
int main() { sayHello(1); return 0; }

[Slide 94] Header Guards

• Header files include other headers they require

34

3.6 Header and Implementation Files

– E.g., for defined data types (see later)
• Transitive includes: same header might be included multiple times!
• But: can cause problems due to redefinitions
⇝ Wrap entire header with #ifdef and unique identifier

//--- sayhello.h
#ifndef CPPLECTURE_HELLO_H
#define CPPLECTURE_HELLO_H

/// Print "Hello!" to standard output.
void sayHello();

#endif // CPPLECTURE_HELLO_H

• Non-standard alternative

//--- sayhello.h
#pragma once

/// Print "Hello!" to standard output.
void sayHello();

The first time sayhello.h is included, the macro CPPLECTURE_HELLO_H is not defined
and therefore the remainder of the file will be considered. In particular, the macro
will be defined. In a possible later second inclusion, the macro will be defined and
the content of the file will be ignored.

It is crucial that every header has a unique name for the header guard macro. By
convention, the name of the path and file is used. This is particularly important
when copying files.
#pragma once is an alternative for the same goal. However, as there is no portable

way to actually determine whether two files are the same (consider symbolic links,
hard links, etc.), it is not standardized and therefore avoided by many projects.

[Slide 95] Header Files and #include

• Include (exactly) used header files at the beginning
– In both, header and implementation file
– Be careful about transitive includes

• Typically grouped by: (Example)

1. Accompanying header file

2. Project includes

3. Library includes

4. System includes

• Only include header files
• Never include implementation files!

35

3 Declarations/Definitions, Preprocessor, Linker

[Slide 96] Typical Project Layout

+-- CMakeLists.txt
+-- src/

+-- Module.cpp
+-- Module.hpp
+-- Printer.cpp
+-- Printer.hpp
+-- log/

+-- Log.cpp
+-- Log.hpp
+-- LogEntry.cpp
+-- LogEntry.hpp

+-- main.cpp

• Source files and header files next to each other
• Entry points (main()) often separate

– Typically small files ⇝ easier testing
• CMakeLists defines

– add_executable with all sources (*.cpp)
– target_include_directories(... src)

• Alternative layouts exist

Some typical variants from this layout:
• Headers are stored in a separate include directory next to src.

This is typically seen with libraries, where the public headers, which get in-
stalled and exposed to library users, are in include while private headers are
in src.

• Programs with main reside in a separate directory (e.g., tools). The main
source files are compiled as a static library and executables link against the
static library.
This is typically used when multiple programs get compiled. This way, the
main source files get compiled only once and are testable, because they don’t
provide a program entry point.

• One CMakeLists.txt per directory, which adds the source files of the directory
to some variable instead of having a single top-level file that lists all files.
This is typically used by large projects where a single file list might not be
maintainable.

[Slide 97] Tracking Changes in Source Code

//--- a.hpp
extern int globalA;
//--- a.cpp
#include "a.hpp"
int globalA = 10;
//--- square.hpp
#include "a.hpp"
int square(int n = globalA);

36

3.7 Linkage

//--- square.cpp
#include "square.hpp"
void square(int n) {
return n * n;

}
//--- main.cpp
#include "square.hpp"
// ...

Quiz: a.hpp changed. Which files to re-compile?
A. a.hpp
B. a.cpp
C. a.cpp, square.cpp
D. a.cpp, square.cpp, main.cpp
E. a.hpp, a.cpp, square.cpp, main.cpp

[Slide 98] Tracking Changes in Source Code

• Incremental compilation: only recompile files that actually changed
– Substantially reduces build time during development

• Detecting files that need recompilation is non-trivial
– Transitive dependencies of header files

• Build systems like CMake use compiler to output list of used includes
– If any of the files changed, the source file needs recompilation

It is also possible to achieve accurate tracking of updated header files with plain
Makefiles, but it is non-trivial (it involved instructing the compiler to write de-
pendencies to separate files and including these files in the Makefile). Thus, it is
strongly recommendable to use a proper build system for C++ projects, which track
dependencies. Examples are CMake, Meson, scons, and waf, and several others exist
as well.

3.7 Linkage

[Slide 99] Linkage

• Linkage of declaration: visibility across different translation units
• No linkage: name only usable in their scope

– E.g., local variables
• Internal linkage: can only be referenced from same translation unit

– Global functions/variables with static
– const-qualified global variables without extern
– Declarations in namespace without name (“anonymous namespace”)

• External linkage: can be referenced from other translation units
– Global functions/variables (unless static)

37

3 Declarations/Definitions, Preprocessor, Linker

[Slide 100] Declaration Specifiers

• Variable/function declarations allow for additional specifier
• Controls storage duration and linkage

Specifier Global Func/Variable Local Variable

none static + external automatic + none
static static + internal static + none
extern static + external static + external
thread_local thread + ext/int thread + none

• And there’s inline (it deserves it’s own slide)

[Slide 101] Declaration Specifiers – Example

//--- a.cpp
static int foo = 1;
int bar = 2;
static int add(int x, int y) { return x + y; }
int countMe() {
static int counter = 0; // static storage duration, no linkage
return counter++;

}

//--- b.cpp
static int foo = 1; // OK
int bar; // ERROR: ODR violation

// OK: a.cpp’s and b.cpp’s add have internal linkage
static int add(int x, int y) { return x + y; }

You can use static on local variables. This can be useful for constant data that
should only be visible inside the current function. Mutable variables with static
storage duration are problematic in practice when multiple threads call the function
in parallel.

As a general advice, avoid mutable global variables (or local static variables) for
this reason.

[Slide 102] Internal Linkage: Anonymous Namespaces

• Option A: Use static (only works for variables and functions)
static int foo = 1; // internal linkage
static int bar() { // internal linkage

return foo;
}

• Option B: Use anonymous namespaces (preferred)
namespace {
int foo = 1; // internal linkage
int bar() { // internal linkage

38

3.7 Linkage

return foo;
}
} // end anonymous namespace

In C++, prefer anonymous namespaces over static to change the linkage of global
declarations.

[Slide 103] inline Specifier11

• inline – permit multiple definitions in different translation units
– No direct relation to the inlining optimization!

//--- sum.h
#ifndef SUM_H
#define SUM_H

inline int sum(int a, int b) {
return a + b;

}

#endif // SUM_H
//--- a.cpp
#include "sum.h"
// Now has definition of sum
// ...

//--- b.cpp
#include "sum.h"
// Now has definition of sum
// ...

• Linker keeps only one definition

Inline definitions are useful when the presence of the definition can improve optimiza-
tion, e.g. give the compiler the opportunity to do inlining, which would be impossible
if the definition was in a different translation unit.

As a downside, the function gets compiled in every translation unit that includes
the definition, increasing compilation times and the size of the intermediate object
files.

Especially for inline definitions it is important to use header guards to prevent
multiple definitions in the same translation unit.

[Slide 104] Declarations/Definitions, Preprocessor, Linker – Summary

• Preprocessor transforms source code before actual compilation
– Use (almost) exclusively for header guards and header includes

• Use assert() for invariants, but be aware that it is a macro
11https://en.cppreference.com/w/cpp/language/inline

39

https://en.cppreference.com/w/cpp/language/inline

3 Declarations/Definitions, Preprocessor, Linker

• Declarations introduce names, but not necessarily define them
• Exactly one definition of used func/var required in program
• For multiple files, separate header and implementation files
• There must be exactly one definition of every used name
• Exceptions: internal linkage and inline functions

[Slide 105] Declarations/Definitions, Preprocessor, Linker – Questions

• Why is the use of function-like macros problematic?
• What are state modifications inside assert() problematic?
• What is the difference between a declaration and a definition?
• How to declare functions and global variables?
• Why is the header guard important?
• Why is including C++ implementation files (.cpp) a bad idea?
• What does the static specifier do on local variables?
• What is the effect of an unnamed namespace?

40

4 References, Arrays, Pointers

[Slide 107] Value Categories (Simplified)

lvalue

• Can appear on left side of assign-
ment

• Locates an object
• Has an address
• Examples:

– Variable names: var
– Assignment exprs: a = b

rvalue

• Can only appear on right side of
assignment

• Might not have address
• lvalue can be converted implicitly

to rvalue
• Examples:

– Literals: 42
– Most exprs: a + b, a < b

This is a simplified version of the value categories, mostly coherent with very old
C++ standards prior to C++11. We will cover the all possible types of values when
discussing move semantics in a later lecture.

Not all lvalues can actually be assigned to, for example, const-qualified variables
cannot be modified.

4.1 References

[Slide 108] Reference Declarations (1)1

• Declare an alias to an existing object or function
• Lvalue reference: type& declarator
• Definitions must be initialized to refer to a valid object/function
• Declarations don’t need initializer, e.g. parameters
• Peculiarities:

– References are immutable, i.e. can’t change which object is aliased
– References are not objects
⇒ No references to references

[Slide 109] Lvalue References: Example (Alias)

unsigned i = 10;
unsigned j = 20;
unsigned& r = i; // r is now an alias for i

1https://en.cppreference.com/w/cpp/language/reference

41

https://en.cppreference.com/w/cpp/language/reference

4 References, Arrays, Pointers

r = 15; // modifies i to 15
r = j; // modifies i to 20

i = 42;
j = r; // modifies j to 42

[Slide 110] Lvalue References: Example (Pass By Reference)

• References are used to implement pass-by-reference semantics
#include <print>
void computeAnswer(int& result) {
result = 42;

}

int main() {
int theAnswer = -1;
computeAnswer(theAnswer); // theAnswer is now 42

}

[Slide 111] Lvalue References: Example (Returning Reference)

• Function calls returning lvalue references are lvalues
int global1 = 0;
int global2 = 0;

int& getGlobal(int num) {
if (num == 1)
return global1;

return global2;
}

int main() {
getGlobal(1) = 10; // global1 is now 10
getGlobal(2)--; // global2 is now -1

}

A typical application of this is not to return references to globals but to return
references to class members.

[Slide 112] References and cv-Qualifiers

• References themselves cannot be cv-qualified
• But the referenced type can be

– Reference can be initialized by less cv-qualified type e.g. const int& can be
initialized from int&

#include <print>

void printAnswer(const int& answer) {
std::println("{}", answer);

}

42

4.1 References

int main() {
int theAnswer = 42;
printAnswer(theAnswer); // cannot modify theAnswer

}

For primitive types, passing by constant reference is rather pointless. It is important,
however, when passing more complex objects, which could be non-trivial or expensive
to copy.

[Slide 113] Pass-By-Reference

Quiz: What is the output of the program?
#include <print>
void foo(const int& a, int& b, const int& c) {
b += a;
b += c;

}

int main() {
int x = 1;
foo(x, x, x);
std::println("{}", x);

}

A. (undefined behavior) B. 1 C. 2 D. 3 E. 4

[Slide 114] Dangling References2

• Lifetime of object can end while references still exist
⇝ dangling reference, when used: undefined behavior

int& foo() {
int i = 123;
return i; // DANGER: returns dangling reference

}
int bar() {
int& res = foo();
return res; // object used outside its lifetime => UB

}

[Slide 115] Rvalue References

• Extend the lifetime of temporary objects
– NB: const lvalue references can also extend lifetime of temporaries

• Rvalue reference: type&& declarator
• Cannot bind directly to lvalues

int i = 10;
int&& j = i; // ERROR: cannot bind lvalue
int&& r = 42; // OK

2https://en.cppreference.com/w/cpp/language/reference#Dangling_references

43

https://en.cppreference.com/w/cpp/language/reference#Dangling_references

4 References, Arrays, Pointers

int&& k = i + i; // OK, k == 20
k += 22; // OK, k == 42

const int& l = i * i; // OK, l == 100
l += 10; // ERROR: cannot modify constant reference

Typically, the lifetime of temporary objects (if they exist), ends at the end of the full
expression. Rvalue references extend the lifetime of such temporaries until they go
out of scope.

[Slide 116] Passing Rvalues

Quiz: What is the output of the program?
#include <print>
int foo(const int& a, const int& b, int&& c) {
c += b;
return c + a;

}

int main() {
int x = 1;
int r = foo(x, x, x);
std::println("{}", r);

}

A. (compile error) B. 1 C. 2 D. 3 E. 4

[Slide 117] Passing Rvalues

Quiz: What is the output of the program?
#include <print>
int foo(const int& a, const int& b, int&& c) {
c += b;
return c + a;

}

int main() {
int x = 1;
int r = foo(x, x * 2, x + 10);
std::println("{}", r);

}

A. (compile error) B. (undefined behavior) C. 13 D. 14 E. 26

[Slide 118] Reference Declaration Syntax

• & and && syntactically belong to the declarator!
int i = 10;
int& a = i, k = 2; // a is int&, k is int

⇒ Only declare one identifier at a time!
• int& j = 1; and int &j = 1; are valid, follow code style

44

4.2 Arrays

[Slide 119] Rvalue References: Overload Resolution

void foo(int& x);
void foo(const int& x);
void foo(int&& x);

int& bar();
int baz();

int main() {
int i = 42;
const int j = 84;

foo(i); // calls foo(int&)
foo(j); // calls foo(const int&)
foo(123); // calls foo(int&&)

foo(bar()) // calls foo(int&)
foo(baz()) // calls foo(int&&)

}

We did not introduce overloads so far in this lecture. A function of one name can
have multiple overloads with different parameter counts types. Overload resolution is
the process of determining which function gets called. As this also considers implicit
conversions, it is a rather complex procedure, which we will cover later (at least to
some extent).

It is typically not advisable to implement different semantics for const vs. non-
const references. Overloads that take rvalue references will later be used for move
semantics (as the parameter must be an rvalue, it is “lost” after the function call
anyway).

4.2 Arrays

[Slide 120] Arrays3

• Syntax (C-style arrays): type declarator[expression];
• expression must be an integer constant at compile-time
• Elements can be accessed with [] with index 0 · · · < N
• Arrays cannot be assigned or returned

unsigned short arr[10];
for (unsigned i = 0; i < 10; ++i)
arr[i] = i * i;

unsigned a[10];
unsigned b[10];
a = b; // ERROR: cannot assign arrays

3https://en.cppreference.com/w/cpp/language/array

45

https://en.cppreference.com/w/cpp/language/array

4 References, Arrays, Pointers

As for references, the array-size is part of the declarator and doesn’t belong to the
type specifier.

[Slide 121] Array Initialization

• Without an initializer, elements are default-initialized
– Remember: for local variables, this means uninitialized

• Zero-initializer:
unsigned short arr[10] = {}; // 10 zeroes

• List-initializer:
unsigned short arr[] = {1, 2, 3, 4, 5, 6}; // 6 elements

[Slide 122] Array Memory Layout

Elements of an array are allocated contiguously in memory

• Given unsigned short a[10]; containing the integers 1 through 10
• Assuming a 2-byte unsigned short type
• Assuming little-endian byte ordering

Address
02 04 0600

00 00 00 00 00 00 00 00 00 0001 05040302 080706 0a09
08 100e0c0a 12

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Arrays are just dumb chunks of memory

• Out-of-bounds accesses are not detected
• May lead to rather weird bugs, not necessarily crashes
• Exist mainly due to compatibility requirements with C

[Slide 123] sizeof Array

• Like for other types: sizeof return array size in bytes
• Divide by size of an element to determine array length

unsigned short a[10];

for (unsigned i = 0; i < sizeof(a) / sizeof(a[0]); ++i)
a[i] = i * i;

(Don’t do this in C++)

This way of determining the size of an array is inherited from C, but inherently error-
prone. In C++, don’t do this. Instead, use std::array (see later), which provides a
size() method.

46

4.2 Arrays

[Slide 124] Multi-Dimensional Arrays

• Array elements can be arrays themselves

unsigned md[3][2]; // array with 3 elements of (array of 2 unsigned int)
for (unsigned i = 0; i < 3; ++i)
for (unsigned j = 0; j < 2; ++j)
md[i][j] = 3 * i + j;

unsigned b[][2] = { // only the outermost dimension can be omitted
{0, 1},
{2, 3},
{4, 5},

};

• Elements still allocated contiguously in memory

For multi-dimensional arrays, the size of the innermost dimension comes last.

[Slide 125] size_t4

• Designated types for indexed and sizes: std::size_t (<cstddef>)
• Unsigned integer type large enough to represent all possible array sizes and indices

on the target architecture
• Used throughout the standard library for indices/sizes
• Generally use size_t for indexes and array sizes

– For small arrays, unsigned might be sufficient
– Do not use int

[Slide 126] std::array5

C-style arrays should be avoided whenever possible
• Use the std::array type defined in the <array> standard header instead
• Similar semantics as a C-style array
• Optional bounds-checking and other useful features
• template type with two parameters (element type and count)

#include <array>
int main() {
std::array<unsigned short, 10> a;
for (size_t i = 0; i < a.size(); ++i)
a[i] = i + 1; // no bounds checking

}

[Slide 127] std::array

• ... can be returned (unlike C-style arrays)

4https://en.cppreference.com/w/cpp/types/size_t
5https://en.cppreference.com/w/cpp/container/array

47

https://en.cppreference.com/w/cpp/types/size_t
https://en.cppreference.com/w/cpp/container/array

4 References, Arrays, Pointers

std::array<int, 10> squares() {
std::array<int, 10> res = {}; // zero-initialize all elements
for (size_t i = 0; i < a.size(); ++i)
res[i] = i * i;

return res;
}

• ... can be passed as parameter (unlike C-style arrays)

// NB: src is copied by value, might be expensive!
// Prefer const std::array<int, 10>& src instead. (btw, don’t write this code)
void copy(std::array<int, 10>& dst, std::array<int, 10> src) {
assert(dst.size() == src.size() && "size␣mismatch!");
for (size_t i = 0; i < dst.size(); ++i)
dst[i] = src[i];

}

Be very careful about passing arrays by value! Generally, don’t do this unless there’s
a good reason. Small arrays (e.g., two integers) are typically fine, larger arrays can
incur a substantial performance penalty.

Don’t write a copy function like this; instead, rely on standard library function
(e.g., std::memcpy, std::copy), which tend to be more optimized.

[Slide 128] For-Range Loop

• Syntax: for (range-declaration : range-expression) loop-statement
• Execute loop body for every element in range expression

std::array<int, 3> a = {1, 2, 3};
for (int& elem : a)
elem *= 2;

// a is now {2, 4, 6}

for (const int& elem : a)
std::println("{}", elem);

[Slide 129] Special Case: String Literals

• String literals are immutable null-terminated character arrays
• Type of literal with N characters is const char[N+1]
• Artifact of C compatibility
• Generally avoid, use std::string_view or std::string instead
• Occasionally needed for interfacing with C APIs

[Slide 130] String Literals

Quiz: What does the function f return?
size_t f() { return sizeof("Hello!"); }

A. (compile error) B. impl.-defined C. 5 D. 6 E. 7

48

4.3 Pointers

4.3 Pointers

[Slide 131] Pointers6

• Syntax: type* cv declarator

– As for references/arrays/functions, the * is part of the declarator
• No pointers to references, cv qualifies the pointer itself
• Points to an object, stores address of first object byte in memory
• Pointers are objects (unlike references)
• Like reference, pointers can dangle

int* a; // pointer to (mutable) int
const int* a; // pointer to const int
int* const a; // const pointer to (mutable) int
const int* const a; // const pointer to const int

int** e; // pointer to pointer to int

[Slide 132] Address-Of Operator7

• Operator &: obtain pointer to object
• Opeand must be an lvalue expression, cv-qualification is retained

int a = 10;
int* ap = &a;
const int c = 20;
const int* cp = &c;
int* cp2 = &c; // ERROR: cannot convert const int* to int*

int& r = a; // Reference to a
int* rp = &r; // Pointer to a

[Slide 133] Indirection Operator8

• Operator *: obtain lvalue reference to pointed-to object
• Operand must be a pointer, cv-qualification is retained
• Also referred to as pointer dereference

int a = 10;
int* ap = &a;
int& ar = *ap;
ar = 20; // a is now 20
*ap = 4; // a is now 4

6https://en.cppreference.com/w/cpp/language/pointer
7https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_
operator

8https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_
operator

49

https://en.cppreference.com/w/cpp/language/pointer
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_operator
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_address-of_operator
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_operator
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_indirection_operator

4 References, Arrays, Pointers

[Slide 134] What is Happening? (1)

int main() {

}

0x00001234
0x00001230

00 01 02 03
unknown

return address

Stack Memory

[Slide 135] What is Happening? (2)

int main() {
int a = 10;

}

0x00001234
0x00001230

00 01 02 03

0a 00 00 00

unknown
return address

a = 100x0000122c

Stack Memory

[Slide 136] What is Happening? (3)

int main() {
int a = 10;
int b = 123;

}

0x00001234
0x00001230
0x0000122c
0x00001228

00 01 02 03

7b 00 00 00
0a 00 00 00

unknown
return address

a = 10

b = 123

Stack Memory

50

4.3 Pointers

[Slide 137] What is Happening? (4)

int main() {
int a = 10;
int b = 123;
int* c = &a;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
0a 00 00 00

unknown
return address

a = 10

b = 123

c = 0x122c

Stack Memory

[Slide 138] What is Happening? (5)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
2a 00 00 00

unknown
return address

a = 42

b = 123

c = 0x122c

Stack Memory

[Slide 139] What is Happening? (6)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
2a 00 00 00

24 12 00 000x00001220

unknown
return address

a = 42

b = 123

c = 0x122c

d = 0x1224

Stack Memory

51

4 References, Arrays, Pointers

[Slide 140] What is Happening? (7)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

2c 12 00 00
7b 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 123

c = 0x122c

d = 0x1224

Stack Memory

[Slide 141] What is Happening? (8)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

28 12 00 00
7b 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 123

c = 0x1228

d = 0x1224

Stack Memory

[Slide 142] What is Happening? (9)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;
**d = 24;

}

0x00001234
0x00001230
0x0000122c
0x00001228
0x00001224

00 01 02 03

28 12 00 00
18 00 00 00
41 01 00 00

24 12 00 000x00001220

unknown
return address

a = 321

b = 24

c = 0x1228

d = 0x1224

Stack Memory

52

4.3 Pointers

[Slide 143] What is Happening? (10)

int main() {
int a = 10;
int b = 123;
int* c = &a;
*c = 42;
int** d = &c;
**d = 321;
*d = &b;
**d = 24;

return 0;
}

0x00001234
00 01 02 03

unknown

Stack Memory

[Slide 144] Pointers to References?

Quiz: Why are pointers to references impossible?
A. References are not objects and thus have no address.
B. Would be redundant to pointers to pointers.
C. Taking the address of the referenced object is not possible.

[Slide 145] Null Pointers9

• Pointer can point to object, or nowhere (null pointer)
• Null pointer has special value nullptr
• Null pointers of same type are considered as equal
• Dereferencing null pointers is undefined behavior

int safe_deref(const int* x) { // just as an example
if (x == nullptr)
return 0;

return *x;
}

[Slide 146] Null Pointers

Quiz: Which answer is NOT correct?
int safe_deref2(const int* x) {
int v = *x;
if (x == nullptr)
return 0;

return v;
}

A. The compiler can simply remove the null check.
B. The program might crash when nullptr is passed.
C. The program might return zero.
D. The null check prevents an invalid pointer dereference.

9https://en.cppreference.com/w/cpp/language/pointer#Null_pointers

53

https://en.cppreference.com/w/cpp/language/pointer#Null_pointers

4 References, Arrays, Pointers

Undefined behavior might lead to seemingly surprising behavior in optimizing com-
pilers.

[Slide 147] Subscript Operator10

• Treat pointer as pointer to first element of an array
• Follow the same semantics as the array subscript

std::array<int, 3> arr = {12, 34, 45};
const int* ptr = &arr[0]; // pointer to first element, no dereference

for (unsigned i = 0; i < 3; i++)
std::println("{}", ptr[i]);

• C-style arrays often implicitly decay to pointers to the first element

int arr[] = {12, 34, 45};
const int* ptr = arr; // pointer to first element

[Slide 148] Pointer Arithmetic: Addition11

• ptr + idx/ptr - idx: move pointer idx elements to left/right
– Moves underlying address by idx * sizeof(*ptr)

• ptr[idx] equals *(ptr + idx); &ptr[idx] equals7 ptr + idx

std::array<int, 3> arr = {12, 34, 45};
const int* ptr = &arr[1]; // pointer to second element

// prints: 12 45
std::println("{}␣{}", *(ptr - 1), *(ptr + 1));

[Slide 149] Pointer Arithmetic: Past-The-End Pointers

• Only valid pointers are allowed to be dereferenced
• Pointers shall point to valid objects or be nullptr
• Exception: pointer past the end of the last element is allowed
⇝ Constructing out-of-bounds pointers is undefined behavior

std::array<int, 3> arr = {12, 34, 45};
const int* begin = &arr[0]; // OK, points to first element
const int* end = &arr[arr.size()]; // OK, past-the-end pointer

for (const int* p = begin; p != end; ++p) // OK
std::println("{}", p);

int v = *end; // NOT OK: dereferencing past-the-end pointer
int* oobPtr = begin + 4; // NOT OK: pointer out of bounds

10https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_subscript_
operator

11https://en.cppreference.com/w/cpp/language/operator_arithmetic#Additive_operators

54

https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_subscript_operator
https://en.cppreference.com/w/cpp/language/operator_member_access#Built-in_subscript_operator
https://en.cppreference.com/w/cpp/language/operator_arithmetic#Additive_operators

4.3 Pointers

[Slide 150] Pointer Arithmetic: Subtraction

• Assuming two pointers ptr1 and ptr2 point into the same array
• ptr1 - ptr2 is the number of elements between the pointers

#include <cstddef>
int main() {
int array[3] = {123, 456, 789};
const int* ptr1 = &array[0];
const int* ptr2 = &array[3]; // past-the-end pointer

std::ptrdiff_t diff1 = ptr2 - ptr1; // 3
std::ptrdiff_t diff2 = ptr1 - ptr2; // -3

}

[Slide 151] String Literals Quiz

Quiz: What is the output of the program?
#include <print>
int main() {
std::println("{}", "Hello!" + 3);

}

A. (compile error) B. (undefined behavior) C. "Hello!3" D. "lo!" E. (an address)

[Slide 152] Void Pointer12

• Pointer to void is allowed
• Pointers can be implicitly converted to void pointer (retaining cv-quals)
• To use void pointer, it must be casted to a different type

• Used to pass object of unknown type
• Often used in C interfaces (e.g., malloc)
• Tentatively avoid in C++

[Slide 153] static_cast13

• static_cast<new type>(expression)
• Cast expression to “related” type, must be at least as cv-qual’ed

– E.g., cast from void pointer to pointer of different type
– Many more cases, see reference

int i = 42;
void* vp = &i; // OK, no cast required
int* ip = static_cast<int*>(vp); // OK
long* lp = static_cast<long*>(ip); // ERROR
long* lp = static_cast<long*>(vp); // Undefined behavior!

double d = static_cast<double>(i);

12https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_void
13https://en.cppreference.com/w/cpp/language/static_cast

55

https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_void
https://en.cppreference.com/w/cpp/language/static_cast

4 References, Arrays, Pointers

[Slide 154] reinterpret_cast14

• reinterpret_cast<new type>(expression)
• Cast expression to “unrelated” type, reinterpreting bit pattern
• Very limited set of allowed conversions

– E.g., converting pointer to object to pointer to char or std::byte
• Invalid conversions usually lead to undefined behavior
• Only use when strictly required! Also avoid C-style casts

[Slide 155] Strict Aliasing Rule

• Object access with an expression of a different type is undefined behavior
⇒ Accessing an int through a float* is not allowed (pointer aliasing)
⇒ Compilers assume that pointers of different types have different values
• (There are few exceptions)

float f = 42.0f;
// Undefined behavior!
int i = *reinterpret_cast<int*>(&f);

[Slide 156] Pointers are Actually Complex

• Pointers generally consist of the address of the pointed-to object
• But: pointers have more semantic information (provenance15)

– Pointers have “information” about the underlying object
– Used for compiler optimization

• Some hardware platforms have unusual addressing schemes
– E.g., CHERI with 128-bit capabilities, basically pointer with bounds and per-

missions

[Slide 157] Pointers vs. References

Reference Pointer

Usable for passing-by-reference? Yes Yes
Guaranteed non-null? Yes No
Is an object itself? No Yes
Can change which object is referred to? No Yes
Supports pointer arithmetic? No Yes

Recommendation (we will revisit this later):
• Prefer references for pass-by-references
• Use pointer for: optional references (nullptr), pointer changes object, pointer

arithmetic required, storing references in an array
14https://en.cppreference.com/w/cpp/language/reinterpret_cast
15https://www.ralfj.de/blog/2020/12/14/provenance.html

56

https://en.cppreference.com/w/cpp/language/reinterpret_cast
https://www.ralfj.de/blog/2020/12/14/provenance.html

4.3 Pointers

[Slide 158] References, Arrays, Pointers – Summary

• Value classes lvalues (locations) and rvalues
• References are aliases to other objects
• Rvalue references extend lifetime of temporary objects
• Arrays contiguously store multiple elements of same type
• String literals are a special case of an array
• Pointers are objects that point to other objects, or nullptr
• Pointers support arithmetic
• Pointer casts are possible, but are often invalid

[Slide 159] References, Arrays, Pointers – Questions

• Why are arrays of references impossible?
• How can the object referenced by a reference be changed?
• How to pass an object by-reference in C++?
• What is the difference between lvalue and rvalue references?
• What is different between const-lvalue and rvalue references?
• What is the relation between arrays and pointers?
• Which operations on pointers are undefined behavior?
• When is using pointer advisable over using a reference?

57

5 Classes and Conversions

[Slide 161] static_assert1

• static_assert(bool expr, string) – assert at compile-time
• Expression must be a compile-time constant
• Can have an optional failure message

Example:
static_assert(sizeof(int) == 4, "program␣only␣works␣on␣4-byte␣integers");

5.1 Classes

[Slide 162] Classes

class Name1 {
// member specifications...

};
struct Name2 {

// member specifications...
};

• Name can be any valid identifier
• Members can be:

– Variables (data members)
– Functions (member functions)
– Types (nested types)

• Note the trailing semicolon

[Slide 163] Data Members2

• Declarations of (non-extern) variables
• Size of declared variable must be known (see later)
• Variable name must be unique within class
• Variables can have default value

class Name {
int foo = 10;
int& iref;
float* ptr;
const char x;

};

1https://en.cppreference.com/w/cpp/language/static_assert
2https://en.cppreference.com/w/cpp/language/data_members

59

https://en.cppreference.com/w/cpp/language/static_assert
https://en.cppreference.com/w/cpp/language/data_members

5 Classes and Conversions

[Slide 164] Data Layout

• Class is essentially just a sequence of its data members
• Members are stored in memory in declaration order
• Alignment of members is respected ⇝ padding between objects
• Alignment of class is largest alignment of data members

class C {
int i; // sizeof = 4; alignof = 4; offset = 0
// (4 padding bytes)
int* p; // sizeof = 8; alignof = 8; offset = 8
char c; // sizeof = 1; alignof = 1; offset = 16
// (1 padding byte)
short s; // sizeof = 2; alignof = 2; offset = 18
// (4 padding bytes -- sizeof must be multiple of alignof)

}; // sizeof(C) = 24; alignof(C) == 8

Modifying members of a class generally breaks the Application Binary Interface (ABI)
— the interface of compiled programs. This is particularly relevant for shared li-
braries, where often some effort is required to prevent accidental breakage. Some
libraries deliberately include unused space that they can repurpose without changing
the interface visible to other translation units.

Maintaining ABI stability is extremely difficult in practice and requires a high
degree of programmer discipline. This is part of the reason why “modern” libraries
or languages prefer static linking.

[Slide 165] Data Layout

Quiz: What is the size of Line?
class Point {

int x;
int y;
unsigned char color;

};
class Line {

Point a;
Point b;
unsigned char lineWidth;

};

A. (compile error) B. 19 C. 24 D. 28 E. 32

[Slide 166] Bit Fields3

• Can specify bit-size for integer members
• Adjacent bit fields packed together
• Access is fairly expensive, but might reduce memory usage
⇝ Use only when strongly beneficial

3https://en.cppreference.com/w/cpp/language/bit_field

60

https://en.cppreference.com/w/cpp/language/bit_field

5.1 Classes

class Bitfields {
unsigned short flagA : 1;
unsigned short flagB : 1;
unsigned short tinyVar : 11;

};
static_assert(sizeof(Bitfields) == 2);
static_assert(alignof(Bitfields) == 2);

Using bit fields is generally not recommendable. Accessing bit fields requires gener-
ation of bitwise operations to extract or insert the value, which is fairly expensive.

However, when the size of the data type is particularly important, combining flags
or variables with very limited ranges into bit fields can improve memory usage (and
thereby performance).

[Slide 167] Data Layout

Quiz: What is the size of this class?
class Value { // (excerpt from llvm/include/llvm/IR/Value.h)
const unsigned char SubclassID;
unsigned char HasValueHandle : 1;
unsigned char SubclassOptionalData : 7;
unsigned short SubclassData;
unsigned NumUserOperands : 27;
unsigned IsUsedByMD : 1;
unsigned HasName : 1;
unsigned HasMetadata : 1;
unsigned HasHungOffUses : 1;
unsigned HasDescriptor : 1;
Type *VTy;
Use *UseList;

}; // NB: sizeof(void*) == 8; sizeof(unsigned) == 4

A. (compile error) B. 24 C. 32 D. 40 E. 45

[Slide 168] Data Layout: Consequences

• Order of members has impact on class size
⇒ When class size is important, reduce padding
⇒ Recommendation: place all data members together at beginning/end

– Potential padding etc. is easily findable
• All users of the class need to know the declaration

⇒ Class declarations often put in header files
⇒ Adding/modifying members requires changes data layout ⇒ recompilation

– Especially important when distributing libraries – all users must rebuild

[Slide 169] Member Functions

• Declaration of methods just like regular function declarations
• Inline definitions are implicitly inline
• Out-of-line definitions are preferable for non-trivial methods

61

5 Classes and Conversions

//--- foo.h
#pragma once
class Foo {

int foo();
int bar(int x) { // inline definition

return x + 1;
}

};
//--- foo.cpp
int Foo::foo() { // out-of-line definition

return 10;
}

Inline definitions are typically preferable, when the function is very small and giving
the compiler the possibility of inlining the function gives a substantial performance
benefit. For example, inlining a simple get-function for a data member is typically
preferable. For more complex logic, out-of-line definitions in .cpp-files are generally
preferable (why?).

[Slide 170] Inline vs. Out-Of-Line Definitions

Quiz: Which answer is NOT correct?
A. Out-of-line definitions tend to allow for more optimizations.
B. Out-of-line definitions tend to reduce compile time.
C. Inline definitions tend to allow for more optimizations.
D. Inline definitions in headers are possibly compiled several times.

• Similar considerations as for inline functions apply

[Slide 171] Member Access

struct Vec {
unsigned x;
unsigned y;

};
Vec v;
Vec* vp = ...;

// member access:
int l1dist_a = v.x + v.y;
// ptr->member is a shorthand for (*ptr).member
int l1dist_b = vp->x + vp->y;

[Slide 172] this

• Member functions have implicit parameter this; type is Class*
• In member functions, members can be accessed without this (preferred)

struct Vec {
unsigned x;
unsigned y;

62

5.1 Classes

unsigned l1dist() {
return this->x /* explicit access */ + y /* implicit access*/;

}
};
Vec v;
Vec* vp = ...;
int l1dist_a = v.l1dist();
int l1dist_b = vp->l1dist();

[Slide 173] const-Qualified Member Functions

• Member functions can be const-qualified
• this is a const Class*

⇒ Data members are immutable
struct Vec {

unsigned x;
unsigned y;
unsigned getX() const { return x; }
unsigned getY() const { return y; }
unsigned l1dist() const;

};
unsigned Vec::l1dist() const {

return x + y; // this is a const Vec*
}

When a member function does not modify the object, it is highly recommended to
const-qualify it.

[Slide 174] Constness and Member Functions

• For non-const lvalues non-const overloads are preferred over const ones
• For const lvalues only const-qualified functions are selected

struct Foo {
int getA() { return 1; }
int getA() const { return 2; }
int getB() const { return getA(); }
int getC() { return 3; }

};
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value

foo.getA() 1
foo.getB() 2
foo.getC() 3
cfoo.getA() 2
cfoo.getB() 2
cfoo.getC() error

63

5 Classes and Conversions

[Slide 175] Constness of Member Variables

• Constness propagates through pointer lvalue access
• const data members are always constant

– Can only be set once during construction (see later)
• mutable member variables are always non-const (use carefully!)

struct Foo {
int i;
const int c;
mutable int m;

}
Foo& foo = /* ... */;
const Foo& cfoo = /* ... */;

Expression Value Category

foo.i non-const lvalue
foo.c const lvalue
foo.m non-const lvalue
cfoo.i const lvalue
cfoo.c const lvalue
cfoo.m non-const lvalue

[Slide 176] Static Members4

• Static data members: members not bound to class instances
• Only one instance in the program, like global variables
• Static member functions: no implicit this parameter
• Static members can be accessed with :: operator

//--- foo.h
struct Foo {

static int var; // declaration
static void statfn(); // declaration

};
//--- foo.cpp
int Foo::var = 10; // definition
void Foo::statfn() { /* ... */ } // definition

Note that static data members must have an out-of-line definition and, as global
variables, must be defined exactly once in the entire program.

5.2 Constructors

[Slide 177] Constructors

• ... are special functions that are called when an object is initialized
4https://en.cppreference.com/w/cpp/language/static

64

https://en.cppreference.com/w/cpp/language/static

5.2 Constructors

• ... have no return type, no const-qualifier, and name is class name
• ... can have arguments, constructor without arguments is default constructor
• ... are sometimes implicitly defined by the compiler

struct Foo {
Foo() {

// default constructor
}

};
struct Foo {

int a;
Bar b;
// Default constructor is
// implicitly defined, does
// nothing with a, calls
// default constructor of b

};

[Slide 178] Initializer List

• Specify how member variables are initialized before constructor body
• Other constructors can be called in the initializer list
• Members initialized in the order of their definition
• const member variables can only be initialized in the initializer list

struct Foo {
int a = 123; float b; const char c;
// default constructor initializes a (to 123), b, and c
Foo() : b(2.5), c(7) {}
// initializes a and b to the given values
Foo(int a, float b, char c) : a(a), b(b), c(c) {}
Foo(float f) : Foo() {

// First the default constructor is called, then the body
// of this constructor is executed
b *= f;

}
};

[Slide 179] Initializing Objects5

• Constructor executed on initialization
• Arguments given in the initialization are passed to the constructor
• C++ has several types of initialization that are very similar but unfortunately have

subtle differences:
– default initialization (Foo f;)
– value initialization (Foo f{}; and Foo())
– direct initialization (Foo f(1, 2, 3);)
– list initialization (Foo f{1, 2, 3};)
– copy initialization (Foo f = g;)

• Simplified syntax: class-type identifier (arguments); or class-type identifier {arguments };
5https://en.cppreference.com/w/cpp/language/initialization

65

https://en.cppreference.com/w/cpp/language/initialization

5 Classes and Conversions

[Slide 180] Constructors (1)

Quiz: What is the output of the following program?
#include <print>
struct Foo {

int answer;
Foo() : answer(42) {}

};
int main() {

Foo f();
std::println("{}", f.answer);
return 0;

}

A. (compile error) B. 0 C. 42 D. (undefined behavior)

[Slide 181] Constructors (2)

Quiz: What is the return value of foo?
struct C {

int i;
C() = default;

};
int foo() {

const C c;
return c.i;

}

A. (compile error) B. an arbitrary integer C. 0 D. (undefined behavior)

[Slide 182] Constructors (3)

Quiz: What is problematic about this program?
#include <print>
struct Foo {

const int& answer;
Foo() {}
Foo(const int& answer)

: answer(answer) {}
};
int main() {

int answer = 42;
Foo f(answer);
std::println("{}", f.answer);
return 0;

}

A. Compile error: Two constructors are not allowed.
B. Compile error: answer not always initialized.
C. Compile error: f is a function declaration.
D. Undefined behavior: f.answer is a dangling reference.
E. There is no problem: the program always prints 42.

66

5.2 Constructors

[Slide 183] Constructors (4)

Quiz: What is problematic about this program?
#include <print>
struct Foo {

const int& answer;
Foo(const int& answer)

: answer(answer) {}
};
int main() {

int answer = 42;
Foo f = answer;
std::println("{}", f.answer);
return 0;

}

A. Compile error: Cannot assign integer to type Foo.
B. Compile error: Cannot convert integer to Foo.
C. Undefined behavior
D. There is no problem: the program always prints 42.

[Slide 184] Converting and Explicit Constructors6

• Constructors with one argument used for explicit and implicit conversions
• Use explicit to disallow implicit conversion
• Generally, use explicit unless there’s a good reason not to

struct Foo {
Foo(int i);

};
void print_foo(Foo f);
// Implicit conversion,
// calls Foo::Foo(int)
print_foo(123);
// Explicit conversion,
// calls Foo::Foo(int)
static_cast<Foo>(123);
struct Bar {

explicit Bar(int i);
};
void print_bar(Bar f);
// Implicit conversion,
// compiler error!
print_bar(123);
// Explicit conversion,
// calls Bar::Bar(int)
static_cast<Bar>(123);

6https://en.cppreference.com/w/cpp/language/converting_constructor

67

https://en.cppreference.com/w/cpp/language/converting_constructor

5 Classes and Conversions

5.3 Member Access Control

[Slide 185] Member Access Control

• Every member has public, protected or private access
• Default for class: private; for struct: public

– Recommendation: always explicitly specify access control
• public = accessible by everyone, private only by class itself

class Foo {
int a; // a is private

public: // All following declarations are public
int b;
int getA() const { return a; }

protected: // All following declarations are protected
int c;

public: // All following declarations are public
static int getX() { return 123; }

};

[Slide 186] Friend Declarations7

• Class body can contain friend declarations
• Friend: has access to private/protected members
• friend function-declaration; (for friend function)
• friend class-specifier; (for friend class)

class A {
int a; // private
friend class B;
friend void foo(A&);

};
class B {

void bar(A& a) {
a.a = 42; // OK

}
};
class C {

void foo(A& a) {
a.a = 42; // ERROR

}
};
void foo(A& a) {

a.a = 42; // OK
}

[Slide 187] Nested Types

• For nested types classes behave just like a namespace
• Nested types are accessed with ::
• Nested types are friends of their parent

7https://en.cppreference.com/w/cpp/language/friend

68

https://en.cppreference.com/w/cpp/language/friend

5.4 Forward Declarations

struct A {
struct B {

int getI(const A& a) {
return a.i; // OK, B is friend of A

}
};

private:
int i;

};
A::B b; // reference nested type B of class A

5.4 Forward Declarations

[Slide 188] Forward Declarations

• Classes can be forward declared: class Name;
• Type is incomplete until defined later
• Incomplete type can be used, e.g., for pointer/reference

//--- foo.h
class A;
class ClassFromExpensiveHeader;
class B {

ClassFromExpensiveHeader* member;
void foo(A& a);

};
class A {

void foo(B& b);
};
//--- foo.cpp
#include "ExpensiveHeader.hpp"
// ...

There are two benefits of forward-declaring classes: Inclusion of some headers can be
avoided, leading to faster build times, and mutual references between classes become
possible.

Thus, forward declarations are sometimes used in header files, when the actual
class definition is not required.

[Slide 189] Incomplete Types8

• No operations that require size/layout of type are possible
– No pointer arithmetic
– No access to members, member functions, etc.
– No definition/call of function with incomplete return/argument type

• Sometimes, this information is not needed:
– E.g., pointer/reference declarations can refer to incomplete types
– E.g., member functions with incomplete parameter types

8https://en.cppreference.com/w/cpp/language/types#Incomplete_type

69

https://en.cppreference.com/w/cpp/language/types#Incomplete_type

5 Classes and Conversions

5.5 Operator Overloading

[Slide 190] Operator Overloading9

• Classes can overload built-in operators like +, ==, etc.
• Many overloaded operators can also be written as non-member functions
• Overloaded operators are selected with the regular overload resolution
• Overloaded operators are not required to have meaningful semantics
• Almost all operators can be overloaded, exceptions are: ::, ., .*, ?:
• This includes “unusual” operators like: = (assignment), () (call), * (dereference),
& (address-of), , (comma)

[Slide 191] Arithmetic Operators10

lhs op rhs ∼ lhs.operator op (rhs) or operator op (lhs, rhs)

• Overloaded versions of || and && lose their special behaviors
• Should be const and take const references
• Usually return a value and not a reference

struct Int {
int i;
Int operator+(const Int& other) const { return Int{i + other.i}; }
Int operator-() const { return Int{-i}; };

};
Int operator*(const Int& a, const Int& b) { return Int{a.i * b.i}; }
Int a{123}; Int b{456};
a + b; /* is equivalent to */ a.operator+(b);
a * b; /* is equivalent to */ operator*(a, b);
-a; /* is equivalent to */ a.operator-();

[Slide 192] Comparison Operators11

All binary comparison operators (<, <=, >, >=, ==, !=, <=>) can be overloaded.
• Should be const and take const references
• Return bool, except for <=> (see next slide)
• If only operator<=> is implemented, <, <=, >, and >= work as well
• operator== must be implemented separately (then != works, too)

struct Int {
int i;
std::strong_ordering operator<=>(const Int& a) const {

return i <=> a.i;
}
bool operator==(const Int& a) const { return i == a.i; }

};
Int a{123}; Int b{456};
a < b; /* is equivalent to */ (a.operator<=>(b)) < 0;
a == b; /* is equivalent to */ a.operator==(b);

9https://en.cppreference.com/w/cpp/language/operators
10https://en.cppreference.com/w/cpp/language/operator_arithmetic
11https://en.cppreference.com/w/cpp/language/operator_comparison

70

https://en.cppreference.com/w/cpp/language/operators
https://en.cppreference.com/w/cpp/language/operator_arithmetic
https://en.cppreference.com/w/cpp/language/operator_comparison

5.5 Operator Overloading

[Slide 193] Three-Way12

operator<=> should return one of the following types from <compare>: std::partial_ordering,
std::weak_ordering, std::strong_ordering.

• When comparing two values a and b with ord = (a <=> b), then ord has one of
the three types and can be compared to 0:

• ord == 0 ⇔ a == b
• ord < 0 ⇔ a < b
• ord > 0 ⇔ a > b
• strong_ordering convertible to weak_ordering and partial_ordering
• weak_ordering convertible to partial_ordering

[Slide 194] Three-Way Comparison (2)

• partial_ordering can be unordered, i.e. neither a <= b nor a >= b
– std::partial_ordering::less, ::equivalent, ::greater, ::unordered
– Example: floating-point numbers, NaN is unordered

• std::weak_ordering or std::strong_ordering for total order
– ::less, ::equivalent, ::greater
– strong_ordering: equal values must be completely indistinguishable
– Example for strong ordering: integers
– Example for weak ordering: points in 2d-space ordered by distance from origin

[Slide 195] Increment and Decrement13

Pre- and post-inc/dec are distinguished by an (unused) int argument
• C& operator++(); C& operator--(); pre-increment or -decrement, modify ob-

ject, return *this
• C operator++(int); C operator--(int); post-increment or -decrement, copy

self, modify self, return unmodified copy
struct Int {

int i;
Int& operator++() { ++i; return *this; }
Int operator--(int) { Int copy{*this}; --i; return copy; }

};
Int a{123};
++a; // a.i is now 124
a++; // ERROR: post-increment is not overloaded
Int b = a--; // b.i is 124, a.i is 123
--b; // ERROR: pre-decrement is not overloaded

[Slide 196] Subscript Operator14

Classes behaving like containers/pointers usually override the subscript []

12https://en.cppreference.com/w/cpp/utility/compare/partial_ordering
13https://en.cppreference.com/w/cpp/language/operator_incdec
14https://en.cppreference.com/w/cpp/language/operator_member_access

71

https://en.cppreference.com/w/cpp/utility/compare/partial_ordering
https://en.cppreference.com/w/cpp/language/operator_incdec
https://en.cppreference.com/w/cpp/language/operator_member_access

5 Classes and Conversions

• a[b] is equivalent to a.operator[](b)
• Type of b can be anything, for array-like containers it is usually size_t

struct Foo { /* ... */ };
struct FooContainer {

Foo* fooArray;
Foo& operator[](size_t n) { return fooArray[n]; }
const Foo& operator[](size_t n) const { return fooArray[n]; }

};

[Slide 197] Dereference Operators15

Classes behaving like pointers usually override the operators * and ->

• operator*() usually returns a reference
• operator->() should return a pointer or an object that itself has an overloaded ->

operator
struct Foo { /* ... */ };
struct FooPtr {

Foo* ptr;
Foo& operator*() { return *ptr; }
const Foo& operator*() const { return *ptr; }
Foo* operator->() { return ptr; }
const Foo* operator->() const { return ptr; }

};

[Slide 198] Assignment Operators16

• Operator = is often used for copying/moving (see next week)
• All assignment operators usually return *this

struct Int {
int i;
Foo& operator+=(const Foo& other) { i += other.i; return *this; }

};
Foo a{123};
a = Foo{456}; // a.i is now 456
a += Foo{1}; // a.i is now 457

[Slide 199] Conversion Operators17

• Conversion can be done using converting constructors (seen before)
• or conversion operators: operator type ()

• The explicit keyword can be used to prevent implicit conversions
• Explicit conversions are done with static_cast

struct Int {
int i;
operator int() const {

15https://en.cppreference.com/w/cpp/language/operator_member_access
16https://en.cppreference.com/w/cpp/language/operator_assignment
17https://en.cppreference.com/w/cpp/language/cast_operator

72

https://en.cppreference.com/w/cpp/language/operator_member_access
https://en.cppreference.com/w/cpp/language/operator_assignment
https://en.cppreference.com/w/cpp/language/cast_operator

5.5 Operator Overloading

return i;
}

};
Int a{123};
int x = a; // OK, x is 123
struct Float {

float f;
explicit operator float() const {

return f;
}

};
Float b{1.0};
float y = b; // ERROR, implicit conversion
float y = static_cast<float>(b); // OK

[Slide 200] operator bool

• operator bool: converts to bool
• Used to enable use of object in if, while, etc.

– if, while etc. perform an explicit conversion

struct Ptr {
void *p;
explicit operator bool() const {

return p; // pointers have an implicit conversion to bool
}

};
Ptr p{nullptr};
if (p) {} // OK: explicit conversion
bool hasPtr = p; // ERROR: implicit conversion

[Slide 201] Argument-Dependent Lookup18

• Overloaded operators are usually defined in the same namespace as the type of one
of their arguments

• Regular unqualified lookup would not allow the following example to compile
• To fix this, unqualified names of functions are also looked up in the namespaces of

all arguments
• This is called Argument Dependent Lookup (ADL)

namespace A { class X {}; X operator+(const X&, const X&); }
int main() {

A::X x, y;
A::operator+(x, y); // OK
x + y; // How to specify namespace here?

// -> OK: ADL finds A::operator+()
operator+(x, y); // OK for the same reason

}

18https://en.cppreference.com/w/cpp/language/adl

73

https://en.cppreference.com/w/cpp/language/adl

5 Classes and Conversions

5.6 Enums

[Slide 202] Enums19

• Typically used like integral types with a restricted range of values
• Also used to assign descriptive names instead of “magic” integer values
• Syntax: enum-key name { enum-list };
• enum-key can be enum, enum class, or enum struct
• Without explicit value, first element gets zero, other increment from previous

enum Color {
Red, // Red == 0
Blue, // Blue == 1
Green, // Green == 2
White = 10,
Black, // Black == 11
Transparent = White // Transparent == 10

};

[Slide 203] Using Enum Values

• Names from the enum list can be accessed with the scope resolution operator
• Enums can be converted to integers and vice versa with static_cast
• enum without class/struct: C-style enums

– Names also introduced in the enclosing namespace
– Can be converted implicitly int

• enum class and enum struct are equivalent
• Recommendation: Use enum class unless you have a reason not to

Color::Red; // Access with scope resolution operator
Blue; // Access from enclosing namespace
int i = Color::Green; // i == 2, implicit conversion
int j = static_cast<int>(Color::White); // j == 10
Color c = static_cast<Color>(11); // c == Color::Black

5.7 Type Aliases

[Slide 204] Type Aliases20

• Type names nested deeply in namespaces/classes can become very long
⇝ Type alias: using |name | = |type |;
• name is the name of the alias, type must be an existing type
• (C compatibility: equivalent to typedef, but prefer using)

namespace A::B::C { struct D { struct E {}; }; }
using E = A::B::C::D::E;
E e; // e has type A::B::C::D::E
struct MyContainer {

19https://en.cppreference.com/w/cpp/language/enum
20https://en.cppreference.com/w/cpp/language/type_alias

74

https://en.cppreference.com/w/cpp/language/enum
https://en.cppreference.com/w/cpp/language/type_alias

5.7 Type Aliases

using value_type = int;
};
MyContainer::value_type i = 123; // i is an int

Type aliases in classes are already somewhat useful know, as they allow to change
the concrete type at only one location, e.g., the integer type used for storing indices
in a container.

Later with templated classes, nested type aliases become much more important,
as they allow for a unified interface to access, for example, the element type of a list
without further knowledge on the list type itself.

[Slide 205] Classes and Conversions – Summary

• Classes are a sequence of their data members
• Classes can have member functions with implicit this pointer
• Member functions can be const-qualified
• Constructors are called for initializing objects
• Constructors and operators provide implicit/explicit conversions
• Class members can have different access control
• Access control can be circumvented by friend declarations
• Almost all operators can be overloaded with custom semantics
• Enums are, optionally scoped, integer types with descriptive value names

[Slide 206] Classes and Conversions – Questions

• What is the difference between class and struct?
• When is padding required between fields?
• How can the size of a struct be reduced?
• What is the type of this? Is it always the same?
• Why do methods returning references typically have a non-const-qualified and a

const-qualified overload? Which overload is taken in which cases?
• Why do references members have to be initialized in initializer lists?
• Why could massive operator overloading be problematic in large projects?
• How to access the raw integer value of enum class enumerators?

75

6 Memory Management and Copy/Move

6.1 Heap Allocations

[Slide 208] Stack vs. Heap Memory

Stack Memory

• Used for objects with
automatic storage duration

• Compiler can decide when alloca-
tion/dealloc happens

+ Fast allocation/deallocation
− No dynamic data structures
− Only small allocations (few kiB)
− Memory freed on return

Heap Memory

• Used for objects with
dynamic storage duration

• Programmer explicitly manages
allocation/deallocation

+ Very flexible
− Alloc/dealloc is expensive
− Memory fragmentation
− Error prone!

– Memory leaks, double free

[Slide 209] Dynamic Memory Management

• Create and initialize object: new type initializer 1

– Type must be a type, can be an array; initializer optional
– Allocates heap storage, initializes object, returns pointer

• Destroy object and release memory: delete expr /delete[] expr 2

– Expression must be a pointer allocated by new; ignored if nullptr
– Invoke destructor, deallocate memory

There are a few things to consider when using new/delete:
• new/delete form must match, an array allocated with new type[] must be

destroyed through delete[]. Furthermore, it is not allowed (or even advisable)
to mix C’s malloc with delete or new with C’s free.
(If were to use malloc, you would need to construct an object via placement
new before using it, e.g. new (mallocBuffer) Type(); and then manually
call the destructor before free, e.g. ptr->T̃ype();. Not doing so is undefined
behavior (object used outside its lifetime). This is strongly discouraged unless
strictly required.)

• Not destroying an allocated object is permitted (“memory leak”), but can be

1https://en.cppreference.com/w/cpp/language/new
2https://en.cppreference.com/w/cpp/language/delete

77

https://en.cppreference.com/w/cpp/language/new
https://en.cppreference.com/w/cpp/language/delete

6 Memory Management and Copy/Move

very problematic. It is easy to miss a missing delete.
• Destroying an object multiple times is not just undefined behavior, but also a

way to introduce security vulnerabilities.
Thus, it is strongly recommended to not use new/delete and instead use smart
pointers with ownership semantics to prevent (and/or reduce the risk of) many of
these problems.

[Slide 210] new/delete Example

#include <print>
class Foo {

const int birthYear;
public:

explicit Foo(int birthYear) : birthYear(birthYear) {}
int getAge(int year) const { return year - birthYear; }

};

int main() {
Foo* foo = new Foo(2021);
std::println("age:␣{}", foo->getAge(2024));
delete foo;
return 0;

}

[Slide 211] new/delete Example

Quiz: What is the output of the program?
#include <print>
#include <string_view>
class Ballot {

const bool voteGOP;
public:

Ballot(bool voteGOP) : voteGOP(voteGOP) {}
std::string_view getParty() const { return voteGOP ? "GOP" : "DNC"; }

};
int main() {

Ballot ballot = new Ballot(/*voteGOP=*/false);
std::println("Voted␣{}", ballot.getParty());
return 0;

}

A. (compile error) B. Voted DNC C. Voted GOP D. (undefined behavior)

[Slide 212] new/delete Example

Quiz: What is problematic about this function?
#include <ctime>
class Ballot { /* ... */ };
Ballot* castBallot() {

std::time_t time = std::time(nullptr); // UNIX timestamp
Ballot* ballot = new Ballot(time % 2); // Informed decision
if (time % 5 == 3)

return nullptr; // ... polling station is too far away :(

78

6.2 Destructor

return ballot;
}

A. Memory is leaked when the condition is taken.
B. Memory is leaked when the condition is not taken.
C. Memory is always leaked.
D. The function does not always return the same value.

6.2 Destructor

[Slide 213] Destructor3

• Special function called when lifetime of object ends
– For automatic storage dur: called at scope end in reverse definition order
– Destructors of class members called automatically in reverse order

• No return time, no arguments, name ~ClassName()

• Typical use: deallocate managed resources

[Slide 214] Destructor: Example

struct Bar { /* ... */ };
struct Foo {

Bar b1;
Bar b2;
~Foo() {

std::println("bye");
// b2.~Bar(); called
// b1.~Bar(); called

}
};
void doFoo() {

Foo f;
{ Bar b; /* b.~Bar(); called */ }
// f.~Foo(); called

}

[Slide 215] Using Destructors to Deallocate Resources

class FooPtr {
Foo* ptr;

public:
FooPtr(int birthYear) : ptr(new Foo(birthYear)) {

std::println("new␣{}", static_cast<void*>(ptr));
}
~FooPtr() {

std::println("deleted␣{}", static_cast<void*>(ptr));
delete ptr;

}
Foo& operator*() const { return *ptr; }

3https://en.cppreference.com/w/cpp/language/destructor

79

https://en.cppreference.com/w/cpp/language/destructor

6 Memory Management and Copy/Move

Foo* operator->() const { return ptr; }
};
int main() {

FooPtr foo(2021);
std::println("age:␣{}", foo->getAge(2024));
return 0;

}

The FooPtr wrapper automatically destroys the heap-allocated object when it goes
out of scope.

[Slide 216] new/delete Example

Quiz: What is problematic about this code?
class FooPtr { /* ... */ };
void printAge(FooPtr foo) {

std::println("age:␣{}", foo->getAge(2024));
}
int main() {

FooPtr foo(2021);
printAge(foo);
return 0;

}

A. An instance of Foo is leaked.
B. The getAge call uses an object outside its lifetime.
C. The same instance of Foo is destroyed twice.
D. There is no problem.

6.3 Copy Semantics

[Slide 217] Copy Semantics

• Assignment/construction typically copies object
• By default, copy is shallow
• Ok for fundamental types, problematic for user-defined types
• Copying may be expensive
• Copying may be unintended/avoidable
• Copying is problematic with managed resources

– Might cause leak, when assigned-to object already has resources
– Might cause double-free

[Slide 218] Copy Constructor4

• Syntax: ClassName(const ClassName&)
• Invoked on initialization from an object of same type:

– Copy initialization: T a = b;
4https://en.cppreference.com/w/cpp/language/copy_constructor

80

https://en.cppreference.com/w/cpp/language/copy_constructor

6.3 Copy Semantics

– Direct initialization: T a(b);
– Argument passing: f(b) for void f(T a);

class FooPtr {
// ...
FooPtr(const FooPtr& other) : ptr(new Foo(*other)) {}
//...

};

[Slide 219] Copy Assignment5

• Syntax 1: ClassName& operator=(const ClassName&) (preferred)
• Syntax 2: ClassName& operator=(ClassName) (sometime useful, see later)
• Typically returns *this
• Invoked when assigning to an already initialized object

– a = b;

class FooPtr {
// ...
FooPtr& operator=(const FooPtr& other) { // PROBLEMATIC, see next slide

delete ptr;
ptr = new Foo(*other);
return *this;

}
//...

};

[Slide 220] Copy Assignment

Quiz: What is problematic about this code?
class FooPtr { /* ... */

FooPtr& operator=(const FooPtr& other) {
delete ptr; ptr = new Foo(*other);
return *this;

} /* ... */ };
int main() {

FooPtr foo(2021);
foo = foo;

}

A. Some memory is used after it has been freed.
B. The delete/new is unnecessary.
C. Self-assignment of classes is forbidden in C++.
D. There is no problem.

[Slide 221] Copy Assignment (fixed)

class FooPtr {
// ...
FooPtr& operator=(const FooPtr& other) { // Fixed version

5https://en.cppreference.com/w/cpp/language/copy_assignment

81

https://en.cppreference.com/w/cpp/language/copy_assignment

6 Memory Management and Copy/Move

if (this == &other) // check for self-assignment
return *this;

delete ptr; // NB: could try to reuse storage
ptr = new Foo(*other);
return *this;

}
//...

};

[Slide 222] Implicit Declaration of Copy Constructor/Assignment

• Compiler implicitly declares copy constructor/assignment if not explicitly declared
– Will be public inline and perform member-wise copy in initialization order

• Implicit copy constructor/assignment deleted, if:
– Class has members that cannot be copy-constructed/assigned; or
– Class has a user-defined move constructor or assignment operator

• See reference for more details
• Explicit deletion: T(const T&) = delete;
• Explicit deletion: T& operator=(const T&) = delete;

[Slide 223] Custom Copy Operations: Guidelines

• If implicit copy not sufficient: typically should not be copyable
• Exception: if class manages resources, e.g. dynamic memory
• Rule of three6: If one of the following is user-defined, all three have to be: de-

structor, copy constructor, copy assignment
– Custom destructor: cleanup needs to be done on copy assignment
– Custom copy constructor: custom setup, needs to be done in copy assignment
– Custom resource management (e.g., file descriptor): implicit versions incorrect

6.4 Move Semantics

[Slide 224] Move Semantics

• Copy semantics often incur avoidable overhead
• Object might be immediately destroyed after copy
• Object might be unable to share resources for copy
• Move constructor/assignment “steals” resources of argument
• Leave argument in valid, empty state (destructor will be called nonetheless)
• Indicated by use of rvalue reference

6https://en.cppreference.com/w/cpp/language/rule_of_three

82

https://en.cppreference.com/w/cpp/language/rule_of_three

6.4 Move Semantics

The intution is: rvalue references indicate references to temporaries that expire when
the reference goes out of scope, i.e., for function parameters the value’s lifetime ends
at the end of the function anyway — thus, just take the resources before they are
destroyed.

[Slide 225] Move Constructor7

• Syntax: ClassName(ClassName&&) noexcept
• Invoked on initialization from an temporary value of same type
⇝ Steal resources of argument, its lifetime ends at the constructor end

class FooPtr {
// ...
FooPtr(FooPtr&& other) : ptr(other.ptr) {

other.ptr = nullptr; // Must leave in valid, empty state for destructor
}
//...

};

[Slide 226] Move Assignment8

• Syntax: ClassName& operator=(ClassName&&) noexcept
• Invoked when assigning an rvalue to an already initialized object

– a = b();

class FooPtr {
// ...
FooPtr& operator=(FooPtr&& other) {

if (this == &other)
return *this;

delete ptr;
ptr = other.ptr;
other.ptr = nullptr;
return *this;

}
//...

};

[Slide 227] Implicit Declaration of Move Constructor/Assignment

• Compiler implicitly declares move constructor/assignment if:
– No user-declared copy/move constructors, assignment operators, and destruc-

tors
• Implicit move constructor/assignment deleted, if:

– Class has members that cannot be move-constructed/assigned; or
– Class has member of reference type

• See reference for more details
7https://en.cppreference.com/w/cpp/language/move_constructor
8https://en.cppreference.com/w/cpp/language/move_assignment

83

https://en.cppreference.com/w/cpp/language/move_constructor
https://en.cppreference.com/w/cpp/language/move_assignment

6 Memory Management and Copy/Move

• Explicit deletion possible similar to copy constructor/assignment

[Slide 228] Custom Move Operations: Guidelines

• If class manages resources: custom move often necessary
• Move operations should not allocate new resources
• Moved-from object must remain in valid state
• Rule of five9:

– If move semantics are desired: need all five special member functions
– If only move semantics are desired: still need all five, define copy as deleted

• Implementing move operations is typically a pure optimization

[Slide 229] Converting Lvalue to Rvalue Reference

• Want to move object?
• But only have an lvalue?
• static_cast<Type&&>(obj)

– New value category: xvalue — eXpiring object whose resources can be reused
– Like lvalue, object has an identity
– Like rvalue, can be moved from (i.e., overload resolution selects rvalue-ref vari-

ant)
• Syntactic sugar (preferred): std::move(obj) from <utility>

[Slide 230] Copy/Move Constructor

Quiz: Which methods on FooPtr are called?
Assume that FooPtr implements all copy/move constructors/assignments.
FooPtr createFoo() { return FooPtr(2020); }
void printAge(FooPtr foo) {

std::println("age:␣{}", foo->getAge(2024));
}
int main() {

FooPtr f = createFoo();
printAge(createFoo());

}

A. constr; copy-constr; destr; constr; copy-constr; destr; destr; destr

B. constr; copy-constr; destr; constr; move-constr; destr; destr; destr

C. constr; constr; copy-constr; destr; destr; destr

D. constr; constr; destr; destr

9https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five

84

https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five

6.5 Idioms

[Slide 231] Copy Elision10

• Compilers (must) sometimes omit copy/move constructors if object can be directly
in storage where it would be copied/moved to

• Examples: return values, arguments with prvalue
⇒ Zero-copy pass-by value semantics
• Some elisions are required by C++17, but not all
⇝ Portable programs should not rely on side-effects of constructors/destructor

6.5 Idioms

[Slide 232] Copy-And-Swap

• Class defines ClassName& operator=(ClassName) for copy/move
• Exchange resources between argument and *this
• Copy constructor creates copy
• Let destructor clean up resources at function return

class FooPtr {
Foo* ptr;

public:
~FooPtr() { delete ptr; }
FooPtr(const FooPtr& other) : ptr(new Foo(*other)) {}
FooPtr& operator=(FooPtr other) {

std::swap(ptr, other.ptr);
return *this;

} // destructor of other cleans up formerly own resources
};

Note that using this idiom might temporarily use more resources than strictly re-
quired: On a copy assignment, a new copy is made unconditionally and existing
resources (e.g., memory) are not reused.

[Slide 233] Resource Acquisition is Initialization (RAII)11

• Idea: bind lifetime of resource to lifetime of an object
– Resources: heap memory, files, mutex, database connection, ...

⇒ Guarantees resource availability during lifetime of object
⇒ Guarantees that resource is released at lifetime end of object
• Encapsulate each resource into a class solely responsible for managing it
• Constructor acquires resource; destructor releases resource
• Delete copy ops, implement custom move ops

[Slide 234] RAII Example

10https://en.cppreference.com/w/cpp/language/copy_elision
11https://en.cppreference.com/w/cpp/language/raii

85

https://en.cppreference.com/w/cpp/language/copy_elision
https://en.cppreference.com/w/cpp/language/raii

6 Memory Management and Copy/Move

class FooPtr {
Foo* ptr;

public:
FooPtr(int birthYear) : ptr(new Foo(birthYear)) {}
~FooPtr() { delete ptr; }
FooPtr(const FooPtr& other) = delete;
FooPtr(FooPtr&& other) : ptr(other.ptr) { other.ptr = nullptr; }
FooPtr& operator=(const FooPtr& other) = delete;
FooPtr& operator=(FooPtr&& other) { // code style condensed for slide :|

if (this != &other) { delete ptr; ptr = other.ptr; other.ptr = nullptr; }
return *this;

}
};
int consumeFoo(FooPtr foo) {

if (condition)
return 1; // No need to free memory

// ...
return 0;

}
int main() {

FooPtr foo(2020);
return consumeFoo(std::move(foo)); // foo is empty now

}

[Slide 235] RAII: Implications

• One of the most important and powerful idioms in C++
• RAII objects should have automatic(/temporary) storage duration
⇝ Compiler manages lifetime and thus resource

• Don’t use new/delete outside of RAII class
– C++ provides smart pointers for this, see later

• Keep RAII classes (custom copy/move/destructor) small and focused
• For all other classes, use default or delete

– Rule of zero12

6.6 Ownership

[Slide 236] Ownership Semantics

• Enabled by RAII idiom with move semantics
• A resource is always “owned”, i.e., encapsulated by exactly one C++ object
• Ownership can be transferred by moving the object

– Pass RAII class by value or return to indicate transfer of ownership
• Very rarely, shared ownership is needed

[Slide 237] std::unique_ptr13

• Smart pointer ownership for an arbitrary pointer/array (can be nullptr)

12https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
13https://en.cppreference.com/w/cpp/memory/unique_ptr

86

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-zero
https://en.cppreference.com/w/cpp/memory/unique_ptr

6.6 Ownership

• Automatically destroys object when unique_ptr goes out of scope
• Can be used like a raw pointer — but only moveable, not copyable
• Pass std::unique_ptr by value, not by reference
• Prefer std::unqiue_ptr over raw pointers

#include <memory>
class Foo { /* ... */ };
int main() {

// make_unique forwards arguments to constructor
std::unique_ptr<Foo> foo = std::make_unique<Foo>(2020);
if (!foo) return 1; // contextually convertible to bool, like raw pointer
foo->printAge(2024); // ->, * work as for raw pointers
Foo* fp = foo.get(); // get raw pointer
// Foo* fp2 = foo.release(); // release ownership; must delete manually

}

[Slide 238] std::unique_ptr for Arrays

• Can also be used for heap-based arrays
std::unique_ptr<int[]> foo(unsigned size) {

std::unique_ptr<int[]> buffer = std::make_unique<int[]>(size);
for (unsigned i = 0; i < size; ++i)

buffer[i] = i;
return buffer; // transfer ownership to caller

}
int main() {

std::unique_ptr<int[]> buffer = foo(42);
// do something

}

[Slide 239] std::shared_ptr14

• Smart pointer with shared ownership
• Resource released when last owner releases it
• Implemented through atomic reference counting
• Can be copied and moved
• Use std::make_shared for creation

• std::shared_ptr is expensive and should be avoided where possible

[Slide 240] std::shared_ptr – Example

#include <memory>
#include <vector>
struct Node {

std::vector<std::shared_ptr<Node>> children;
void addChild(std::shared_ptr<Node> child);
void removeChild(unsigned index);

};
int main() {

14https://en.cppreference.com/w/cpp/memory/shared_ptr

87

https://en.cppreference.com/w/cpp/memory/shared_ptr

6 Memory Management and Copy/Move

Node root;
root.addChild(std::make_shared<Node>());
root.addChild(std::make_shared<Node>());
root.children[0]->addChild(root.children[1]);
root.removeChild(1); // does not free memory yet
root.removeChild(0); // frees memory of both children

}

This is not a really good example: alternatively, there could be a struct Graph which
owns all the nodes; and the nodes then use raw pointers to reference each other. This
alternative design would be more efficient and therefore often preferable.

6.7 Usage Guidelines

[Slide 241] Usage Guidelines

Param. Type Type Copyable Type not Copyable

T Copy, small objects only Transfer ownership

T&/const T& No ownership transfer, object larger than pointer;
const if callee should not modify object;
don’t use for unique_ptr&friends

T*/const T* Like &, but nullable

T&& Ownership transfer — (use T)

[Slide 242] Memory Management and Copy/Move – Summary

• Heap memory manually managed with new/delete
• Classes have destructors executed at end of lifetime
• Custom copy constructor and assignment required for resource management

– Rule of three: if you need one, you need all: destructor, copy constructor/as-
signment

• Custom move constructor and assignment possible as optimization
• Rvalue references indicate moving, use std::move for moving lvalues
• Use small RAII classes for managing resources
• Use std::unique_ptr instead of manual new/delete
• For shared ownership use std::shared_ptr, but avoid if possible

[Slide 243] Memory Management and Copy/Move – Questions

• What are problems of manually using new/delete?
• What is the difference between copy constructor and assignment?
• Why do assignment operators often guard against self-assignment?
• When are the implicitly declared constructors/assignments sufficient?
• What is the difference between copying and moving a value?

88

6.7 Usage Guidelines

• Why pass-by-value unproblematic for returns but not for parameters?
• What does std::move do?
• What is the benefit of using dedicated resource/RAII classes?
• How to express ownership transfer in parameters?

89

7 Templates

[Slide 245] On Complexity

One of the most important ways to deal with complexity is to
leave it out.

Simple solutions are often better.

[Slide 246] Type-Generic Functionality

• Some functionality is independent of specific type
– E.g., std::swap, std::unique_ptr, . . .

• Copy-paste: massive code duplication, not maintainable
• Macros: only textual replacement ⇝ very limited

7.1 Basics

[Slide 247] Templates

• Template defines family of classes/functions/type aliases/variables
• Compile-time parameterization on types or constants

– On every instantiation, code compiled with respective specialization
template <class T, size_t N>
class array {
T data[N];

public:
T& operator[](size_t i) { return data[i]; }
// ...

};
int main() {
array<int, 12> a1; // T substituted with int; N with 12
array<char*, 1> a2; // T substituted with char*; N with 1

}

[Slide 248] Template Syntax1

• template <parameter-list > declaration
• Parameter list: comma-separated list of template parameters

– class name (or typename name): Type parameter
1https://en.cppreference.com/w/cpp/language/templates

91

https://en.cppreference.com/w/cpp/language/templates

7 Templates

– type name : Non-type parameter (int, pointer, enum, lvalue reference)
– template <parameter-list > class name : template parameter (avoid)

• Can have default parameters (similar to functions)
• Declaration:

– class or struct (class template)
– A function or member function (function template)
– using (alias template)
– Variable declarartion (variable template)

Template template parameters allow to specialize templates on templated types. Ex-
ample:
template <template <class> Container> void foo() {
Container<int> intContainer;
Container<long> longContainer;

}
// Callable, e.g., as foo<std::vector>();

This is needed extremely rarely and should be avoided.

[Slide 249] Using Templates

• template-name <parameters >
• Results in specialization of template
• Sometimes, arguments can be deduced automatically by compiler

class A; // forward declaration => incomplete type
template <class T1, class T2 = unsigned, unsigned N = 4u>
class Foo { /* ... */ };

Foo<A, int, 32u> foo1;
Foo<long, A*, 12> foo2; // 12 converted implicitly to unsigned
Foo<char> foo3;
Foo<Foo<char>**, long&> foo4;

Template arguments don’t need to be complete if the template itself doesn’t require
the type to be complete (e.g., when only using a T1*).

[Slide 250] More Template Examples

template <class T>
using Storage = std::vector<T>;

template <class T>
void swap(T& a, T& b) {

T tmp = std::move(a);
a = std::move(b);
b = std::move(tmp);

}
int f() {
int x = 10, y = 12;
swap<int>(x, y);

92

7.1 Basics

swap(x, y); // OK, template arguments are deduced
return x; // returns 10

}

[Slide 251] More Template Examples

#include <array>
#include <cstddef>
struct Foo {

template <class T>
using ArrayType = std::array<T, 42>;

template <class T>
std::size_t getSize() {

return sizeof(T);
}

};

int f() {
Foo::ArrayType<int> intArray;
Foo foo;
return foo.getSize<Foo::ArrayType<int>>();

}

[Slide 252] Template Instantiation

• Function/class template itself is not a type/object/function
– No machine code generated from template definition!

• Template must be instantiated
– Compiler generates actual function/class for a specialization
– Specializaton ≈ smart code duplication

• Explicit instantiation: explicit request
• Implicit instantiation: specialization used in context that requires complete type

[Slide 253] Explicit Instantiation

• Force instantiation of a template specialization
• template class template-name <arguments >;
• template ret-type name <arguments >(func parameters);
• Declaration with preceding extern; explicit instantiations follow ODR

//--- A.h
template <class T>
void reallyBigA(T* t);
extern template void reallyBigA<int>(int*);

//--- A.cpp
template <class T>
void reallyBigA(T* t) { /* ... */ }
// Causes compiler to instantiate and therefore actually compile the function
template void reallyBigA<int>(int*);

93

7 Templates

The idea is that — as “usual” — the header file only provides the declaration while
the definition and actual implementation is in a separate source code file.

[Slide 254] Implicit Instantiation

• Occurs when specialization is used where complete type is required
• Members of class template are only instantiated when actually used
• Definitions must be visible for instantiation ⇝ usually provided in header

template <class T>
struct A {

T foo(T value) { return value + 42; }
T bar();

};
int main() {

A<int> a; // Instantiates only A<int>
int x = a.foo(32); // Instantiates A<int>::foo
// No error although A::bar is never defined!
A<float>* aptr; // Does not instantiate A<float>

}

[Slide 255] Explicit vs. Implicit Instantiation

Explicit Instantiation
+ Definition encapsulated in .cpp file
+ Can be shipped as library
− Severely limits usability

Implicit Instantiation
+ Flexibly usable with any type
− Definition must be in header
− User of templates has to compile

them
• Instantiations generated locally in each compilation unit

– Templates are implicitly inline

• Compiler generates code for each instantiation
• Substantially increases compile time
• Usually: implicit instantiation due to flexibility

As an example, assume that compiling the instantiation of one function template
leads to 1 kiB machine code. 10 instantiations therefore lead to 10 kiB code. 10
files each having 10 instantiations lead to 100 kiB machine code. Due to inline link-
age, instantiations of the same specialization can get eliminated during linking, but
nonetheless, the compiler has to generate the code.

In practice, however, explicit instantiations are rare due to the resulting loss of
flexibility. Therefore, templates are typically defined completely in header files. This
is the primary reason why C++ programs tend to have very long compilation times.

[Slide 256] Out-of-Line Definitions

• Slightly weird syntax; sometimes preferable for interface readability

94

7.1 Basics

template <class T>
struct A {

T value;
A(T value);

template <class R>
R convert();

};

template <class T>
A<T>::A(T value) : value(value) { }

template <class T>
template <class R>
R A<T>::convert() { return static_cast<R>(value); }

Some projects prefer out-of-line definitions in the header file for templates, because
the declaration is more compact and therefore the interface becomes more readable.

[Slide 257] Templates: Example (1)

Quiz: What is the output of the program?
#include <print>
template <class T> class Foo {
T value;

public:
static unsigned count;
Foo() { count++; }

};
template <class T> unsigned Foo<T>::count = 0;
int main() {
Foo<int> foo1; Foo<long> foo2; Foo<Foo<int>> foo3;
std::println("{}/{}", Foo<int>::count, Foo<long>::count);
return 0;

}

A. (compile error) B. 1/1 C. 2/1 D. 3/3 E. 4/4

[Slide 258] Templates: Example (2)

Quiz: What is problematic about this code?
#include <array>
#include <print>
template <class T> struct ContainerContainer {
T t;
ContainerContainer() {}
size_t size() const { return t.size(); }

};
int main() {
ContainerContainer<std::array<int, 10>> cc1;
ContainerContainer<long> cc2;
return cc1.size();

}

95

7 Templates

A. Compile error: const std::array<...> has no method size().

B. Compile error: std::array is only declared, but not defined.

C. Compile error: long has no method size().

D. There is no problem, the program exits with status 10.

[Slide 259] Templates: Example (3)

Quiz: What is the output of the program?
#include <print>
#include <utility>
struct A { int a; };
int r(A&) { return 1; }
int r(A&&) { return 2; }

template <class T = void> int foo(T&& t) { return r(t); }
int main() {
A a{12};
std::println("{}/{}", foo(A{12}), foo(a));
return 0;

}

A. (compile error) B. 1/1 C. 1/2 D. 2/1 E. 2/2

[Slide 260] Reference Collapsing2

• Template types can form references to references
• But: references of references are not allowed
• T&& && ⇒ T&&
• T& &&, T& &, T&& & ⇒ T&

template <class T> int foo(T&& t) { return r(t); }
int main() {
A a{12};
foo(A{12}); // T is A&& => argument type is A&&
foo(a); // T is A& => argument type is A&
return 0;

}

[Slide 261] Template Argument Deduction3

• All template arguments must be known for instantiation
• But: not all have to be specified for class/function templates
• Based on function/constructor arguments; might fail when ambiguous
• Highly complex set of rules

2https://en.cppreference.com/w/cpp/language/reference#Reference_collapsing
3https://en.cppreference.com/w/cpp/language/template_argument_deduction

96

https://en.cppreference.com/w/cpp/language/reference#Reference_collapsing
https://en.cppreference.com/w/cpp/language/template_argument_deduction

7.2 auto Type

template <class T> T max(const T& a, const T& b);
int main() {
int a = 0; long b = 42;
max(a, b); // ERROR: Ambiguous deduction of T
max(a, a); // OK, T = int
max<int>(a, b); // OK
max<long>(a, b); // OK

std::unique_ptr ptr = make_unique<int>(42); // OK, T = int
}

[Slide 262] Templates: Argument Deduction (1)

Quiz: What is the output of the program?
Assume 4-byte integers and 8-byte pointers.
#include <print>
template <class T> size_t f(T* x) { return sizeof(*x); }
int main() {
int* x = nullptr;
std::println("{}", f(x));
return 0;

}

A. (compile error) B. 4 C. 8 D. (undefined behavior)

[Slide 263] Templates: Argument Deduction (2)

Quiz: What is the output of the program?
Assume 4-byte integers and 8-byte pointers.
#include <print>
template <class T> size_t f(T* x) { return sizeof(*x); }

int main() {
std::println("{}", f(nullptr));
return 0;

}

A. (compile error) B. 0 C. (some positive integer) D. (undefined behavior)

7.2 auto Type

[Slide 264] auto Type4

• auto placeholder: deduce variable type from initializer
• Can (should!) be accompanied by usual modifiers (e.g. const, *, &)

– auto not deduced to reference type, might cause unwanted copies
#include <unordered_map>
int main() {

std::unordered_map<int, const char*> intToStringMap;

std::unordered_map<int, const char*>::iterator it1 =

4https://en.cppreference.com/w/cpp/language/auto

97

https://en.cppreference.com/w/cpp/language/auto

7 Templates

intToStringMap.begin(); // noone wants to read this

auto it2 = intToStringMap.begin(); // much better
}

[Slide 265] auto Type – Examples

const int** foo();
struct A {
const A& foo() { return *this; }

};

void bar() {
auto f1 = foo(); // BAD: auto is const int**
const auto f2 = foo(); // BAD: auto is const int**, f2 is const
auto** f3 = foo(); // BAD: auto is const int

const auto** f4 = foo(); // GOOD: auto is int

A a;
auto a1 = a.foo(); // BAD: auto is const A, copy
const auto& a2 = a.foo(); // GOOD: auto is A, no copy

}

7.3 Variadic Templates

[Slide 266] Parameter Packs5

• Parameter pack: accept zero or more template arguments
• Type: class ... Args / Non-type: type ... Args
• Function parameters: Args ... args
• Appears in function parameter list of a variadic function template
• Parameter pack expression: pattern...
• Expands comma-separated list of pattern, which contains a parameter pack

– E.g., &args... expands to &arg1, &arg2, &arg3

[Slide 267] Parameter Packs – Example

• Implementation somewhat difficult to write
• Straightforward way: tail recursion

#include <print>
void printElements() { } // recursion end

template <typename Head, typename... Tail>
void printElements(const Head& head, const Tail&... tail) {
std::print("{}", head);
if (sizeof...(tail) > 0) // number of elements in Tail
std::print(",␣");

printElements(tail...);

5https://en.cppreference.com/w/cpp/language/parameter_pack

98

https://en.cppreference.com/w/cpp/language/parameter_pack

7.4 Dependent Names

}

int main() {
// Output: "1, 2, 3, 3.14, hello, 4"
printElements(1, 2, 3.0, 3.14, "hello", 4);

}

[Slide 268] Fold Expressions6

• Reduce parameter pack over binary operator
• (pack op ...) becomes E1 ◦ (... ◦ (En−1 ◦ En))
• (... op pack) becomes ((E1 ◦ E2) ◦ ...) ◦ En

• (pack op ... op init) becomes E1 ◦ (... ◦ (En−1 ◦ (En ◦ I)))
• (init op ... op pack) becomes (((I ◦ E1) ◦ E2) ◦ ...) ◦ En

template <typename R, typename... Args>
R reduceSum(const Args&... args) {
return (args + ...);

}
int main() {
return reduceSum<int>(1, 2, 3, 4); // returns 10

}

Fold expressions enable to express semantics rather concise, but sometimes also very
hard to understand. Variadic templates are generally used rather rarely.

7.4 Dependent Names

[Slide 269] Dependent Names (1)7

• In class template: class name and members refer to current instantiation
template <class T>
struct A {
struct B { };

B* b; // B refers to A<T>::B

A(const A& other); // A refers to A<T>

void foo();
void bar() {
foo(); // foo refers to A<T>::foo

}
};

[Slide 270] Dependent Names (2)

• Names dependent on template parameter types that are not members of the current
instantiation are not considered as types by default

6https://en.cppreference.com/w/cpp/language/fold
7https://en.cppreference.com/w/cpp/language/dependent_name

99

https://en.cppreference.com/w/cpp/language/fold
https://en.cppreference.com/w/cpp/language/dependent_name

7 Templates

⇒ Needs typename disambiguator
• Can be omitted in some contexts, see reference

struct A {
using MemberTypeAlias = float;

};
template <class T> struct B {
using AnotherAlias = T::MemberTypeAlias; // no disambiguator required
typename T::MemberTypeAlias* ptr; // disambiguator required

};
int main() {
// outside template declaration => no disambiguator required
B<A>::AnotherAlias value = 42.0f;

}

[Slide 271] Dependent Names (3)

• Similar rules apply for template names inside template definitions
• Name that is not member of current instantiation not considered as template

⇒ Needs template disambiguator
template <class T> struct A {
template <class R>
R convert(T value) { return static_cast<R>(value); }

};

template <class T> T foo() {
A<int> a;
return a.template convert<T>(42);

}

[Slide 272] Dependent Names: Motivation

Quiz: What is the output of the following program?
Assume 4-byte integers and 8-byte pointers.
#include <print>
template <class T> int fn(bool param, int a) {
if (param) {
T::member* a; return sizeof(a);

}
return 0;

}
struct S1 { static const int member = 5; };
struct S2 { using member = int; };
int main() {
std::println("{}/{}", fn<S1>(true, 1), fn<S2>(true, 1));

}

A. (compile error) B. 4/1 C. 4/4 D. 4/8 E. 8/8

The reason why a typename disambiguator is sometimes required is syntactic ambi-
guity — without information whether a name is a type or a variable, C++ code is
not parseable. Outside of templates, this information is known, but inside templates,

100

7.5 Explicit Specialization

it depends on the template parameter. To allow for parsing the template without
this information, types must be explicitly disambiguated.

7.5 Explicit Specialization

[Slide 273] Explicit Specialization

• Sometimes, we want a different behavior for specific template arguments
• Example: different algorithm for a templated find function, e.g., binary search for

array, linear search for linked
• Example: optimized storage for bool
• Explicit specialization: provide specific implementation for certain arguments
• Full specialization: all arguments are specified
• Partial specialization: some arguments are specified

[Slide 274] Full Specialization8

• template <> declaration
• Must come after the original template declaration

template <class T> class MyContainer {
/* generic implementation */

};

template <> class MyContainer<bool> {
/* specific implementation */

};

int main() {
MyContainer<float> a; // uses generic implementation
MyContainer<bool> b; // uses specific implementation

}

[Slide 275] Partial Specialization9

• template <parameter-list> class name <argument-list >
• Must come after the original template declaration
• Only class templates can be partially specialized

template <class C, class T> class SearchAlgorithm {
void find (const C& container, const T& value) {

/* do linear search */
}

};

template <class T> class SearchAlgorithm<std::vector<T>, T> {
void find (const std::vector<T>& container, const T& value) {

/* do binary search */
}

8https://en.cppreference.com/w/cpp/language/template_specialization
9https://en.cppreference.com/w/cpp/language/partial_specialization

101

https://en.cppreference.com/w/cpp/language/template_specialization
https://en.cppreference.com/w/cpp/language/partial_specialization

7 Templates

};

[Slide 276] Specializations: Example

Quiz: What is the output of the following program?
#include <print>
template <class T> int foo(T) { return 1; }
template <> int foo<int*>(int*) { return 2; }

int bar(const int& l) { return foo(&l); }

int main() {
std::println("{}", bar(10));

}

A. (compile error) B. 1 C. 2 D. (undefined behavior)

[Slide 277] Traits

• Trait classes: provide generic way to access information about types
template <class> class GraphTraits {};

template <class GraphT>
std::vector<typename GraphTraits<GraphT>::NodePtr>

traverseGraph(const GraphT& graph) {
using NodePtr = GraphTraits<GraphT>::NodePtr;
NodePtr start = GraphTraits<GraphT>::getFirstNode(graph);
// ...

}

template <> // Specialization of traits class for specific graph
class GraphTraits<MyGraph> {
using NodePtr = MyNode*;
NodePtr getFirstNode(const MyGraph& graph) { /* ... */ }
// ...

}

While template alone already allow for a type-generic implementation, this is of-
ten not sufficient when actually doing something with the type. Constraints (see
later) already allow to express certain requirements, but this is in general not flexible
enough — for example, when using a data structure from a library which follows a
different naming convention. In such cases, using traits classes allows to use such
data structures as-is, while having a unified interface for the required functionality.

7.6 Type Traits

[Slide 278] Type Traits (1)10

• Specialization useful for querying information about types themselves (traits)

10https://en.cppreference.com/w/cpp/header/type_traits

102

https://en.cppreference.com/w/cpp/header/type_traits

7.7 Constraints

// NB: use std::is_same instead
// Base case
template <class T1, class T2>
struct is_same { static constexpr bool value = false; };

// Specialization for case where both types are the same
template <class T>
struct is_same<T, T> { static constexpr bool value = true; };

#include <cstdint>
static_assert(is_same<int, long>::value == false);
static_assert(is_same<int, const int>::value == true);
static_assert(is_same<int, int32_t>::value == true);

[Slide 279] Type Traits (2)

// NB: use std::remove_reference instead
template<class T> struct remove_reference { using type = T; };
template<class T> struct remove_reference<T&> { using type = T; };
template<class T> struct remove_reference<T&&> { using type = T; };

template<class T>
using remove_reference_t = typename remove_reference<T>::type;

static_assert(std::is_same<int, remove_reference_t<int>>::value);
static_assert(std::is_same<int, remove_reference_t<int&>>::value);
static_assert(std::is_same<int, remove_reference_t<int&&>>::value);
static_assert(std::is_same<int*, remove_reference_t<int*>>::value);

[Slide 280] Implementation of std::move

• With type traits, std::move becomes easily implementable
template <class T>
std::remove_reference_t<T>&& move(T&& t) {
return static_cast<std::remove_reference_t<T>&&>(t);

}

The remove_reference is required due to reference collapsing; the function should
accept an lvalue or rvalue reference but always return an rvalue reference.

This is just the conceptual implementation. Standard library code tends to be a
lot less readable — all non-fixed names must begin with an underscore (such names
are reserved by the standard; any other name could be collide with a user-defined
name or macro) and often makes heave use of macros to adjust for different C++
standard versions and compilers.

7.7 Constraints

[Slide 281] Type Constraints11

• Template might assume certain things about parameters
11https://en.cppreference.com/w/cpp/language/constraints

103

https://en.cppreference.com/w/cpp/language/constraints

7 Templates

– E.g., member function, copyable, moveable
– Effectively “duck typing”

• Might lead to (horrible) compilation errors when used with incorrect arguments
• Constraint: requirements on template arguments
• Concept: named set of requirements

[Slide 282] Type Constraints – requires Clause12

• requires <constant-expression > – apply constraint to template
#include <concepts>

template <class T> requires true // useless, but valid
void fn() {}

template <class T> requires std::floating_point<T>
T fdiv1(T a, T b) {
return a / b;

}

// template <Concept X> == template <class X> requires Concept<X>
template <std::floating_point T>
T fdiv2(T a, T b) {
return a / b;

}

[Slide 283] Type Constraints and Concepts

• Can also be combined with && and ||
• Greatly improve safety: fewer implicit assumptions
• Improve quality of error messages
• We will revisit constraints and concepts later in the lecture

[Slide 284] Templates – Summary

• Templates enable compile-time specialization of classes/functions/types
• Instantiation either explicit or implicit on use

– Implicit instantiation typically used in practice
• Template arguments sometimes can be deduced from (constructor) arguments
• Names dependent on parameter types may need type disambiguator
• Template specialization: different implementation for specific arguments
• Trait classes use specialization to provide generic interface
• Constraints can express requirements on template arguments
• auto exposes type deduction to variable declarations

[Slide 285] Templates – Questions

• When is a template instantiated?
12https://en.cppreference.com/w/cpp/language/constraints#Requires_clauses

104

https://en.cppreference.com/w/cpp/language/constraints#Requires_clauses

7.7 Constraints

• What is the benefit of explicit instantiation?
• Where to template definitions go?
• How to provide an out-of-line definition for a method in a template class?
• When is a typename disambiguator required?
• Why is using auto without modifiers sometime problematic?
• What are use cases of template specialization?
• How to express requirements on type template arguments?

105

8 Containers and Iterators

8.1 Utilities

[Slide 287] std::optional1

• std::optional<T> (<optional>): value that might not exist
• Can be empty (no value) or non-empty (holding a value)
• Implicit conversion to bool, access contained value with * or ->

std::optional<std::string> mightFail(unsigned arg) {
if (arg < 7) {
return "lt␣7"; // equiv to: std::optional<std::string>("lt 7")

} else {
return std::nullopt; // alternatively: return {};

}
}
void foo(unsigned n) {
if (auto optStr = mightFail(n))
std::println("{}", optStr->size()); // prints: 4

}

[Slide 288] Optional Reference

Quiz: What is the most efficient way to return an optional reference?

A. std::optional<Foo&>

B. std::optional<Foo*>

C. std::optional<std::reference_wrapper<Foo>>

D. Foo*

[Slide 289] std::pair2

• std::pair<T, U> (<utility>): pair of two values
• Members can be accessed with first and second
• Constructible with constructor or std::make_pair

1https://en.cppreference.com/w/cpp/utility/optional
2https://en.cppreference.com/w/cpp/utility/pair

107

https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/pair

8 Containers and Iterators

std::pair<int, double> p1(123, 4.56);
p1.first; // == 123
p1.second; // == 4.56
auto p2 = std::make_pair(456, 1.23);
// p2 has type std::pair<int, double>
p1 < p2; // true

[Slide 290] std::tuple3

• std::tuple<...> (<utility>): tuple of n values
• Members can be accessed with std::get<i>()
• Constructible with constructor or std::make_tuple

std::tuple<int, double, char> t1(123, 4.56, ’x’);
std::get<1>(t1); // == 4.56
auto p2 = std::make_tuple(456, 1.23, ’y’);
// p2 has type std::tuple<int, double, char>
p1 < p2; // true

[Slide 291] Structured Bindings4

• auto [a, b] = t; initialized with std::get<0>(t) and std::get<1>(t)
• Also with auto& and const auto& for references to elements

auto t = std::make_tuple(1, 2, 3);
auto [a, b, c] = t; // a, b, c have type int
auto p = std::make_pair(4, 5);
auto& [x, y] = p; // x, y have type int&
x = 123; // p.first is now 123

[Slide 292] Using Pair/Tuple

• Pair/tuple convey no information about semantics
• User-defined types often preferable, esp. in public interfaces

⇒ Use std::pair/std::tuple sparingly
struct Rational {
long numerator;
long denominator;

};
std::pair<long, long> canonicalize(long, long); // BAD
Rational canonicalize(const Rational&); // BETTER

[Slide 293] std::variant5

• Type which holds exactly one of the alternative types
• Type-safe, alternative share same underlying storage ⇝ smaller size
• Accessible with std::get, std::holds_alternative

3https://en.cppreference.com/w/cpp/utility/tuple
4https://en.cppreference.com/w/cpp/language/structured_binding
5https://en.cppreference.com/w/cpp/utility/variant

108

https://en.cppreference.com/w/cpp/utility/tuple
https://en.cppreference.com/w/cpp/language/structured_binding
https://en.cppreference.com/w/cpp/utility/variant

8.2 Iterators

std::variant<int, double> v; // holds either an int or a double

v = 42; // now holds an int
assert(std::holds_alternative<int>(v));
assert(std::get<int>(v) == 42);

v = 1.0; // now holds a double
// get_if returns pointer to active value, or nullptr
assert(*std::get_if<double>(&v) == 1.0);
assert(std::get_if<int>(&v) == nullptr);

8.2 Iterators

[Slide 294] Iterators6

• Standard library provides various containers, code might define custom ones
• Problem: different containers can have different access methods
⇝ containers not easily exchangable
• Solution: abstract over element access with iterators

– Same pointer-like interface for all containers
⇒ Allows for easy exchange of container type

– Very useful in templates specialized on containers
• Containers define:

– begin() – iterator pointing to first element
– end() – iterator pointing to the first element after the container

begin() returns an iterator to the first element; if the container is empty, it returns
the same as end(). end() returns an iterator past all elements (similar to a past-the-
end pointer of an array). end() is therefore not dereferenceable.

[Slide 295] Iterators: Usage Example

#include <array>
#include <print>
int main() {
std::array<int, 2> arr{1, 2};
auto it = arr.begin();
assert(*it == 1);
++it; // prefer pre-increment
assert(*it == 2);
++it;
assert(it == arr.end()); // end iterator not dereferencable (UB)

for (auto it = arr.begin(); end = arr.end(); it != end; ++it)
std::println("{}", *it);

}

6https://en.cppreference.com/w/cpp/iterator

109

https://en.cppreference.com/w/cpp/iterator

8 Containers and Iterators

Prefer pre-increment — post-increment creates a copy of the iterator.

[Slide 296] Range-Based for Loop7

• for-range loop is syntactic sugar for:
– Calling begin() and end() of the range
– Looping until the iterator equals the end iterator
– Defining variables inside the loop body from the iterator

#include <array>
#include <print>
int main() {
std::array<int, 2> arr{1, 2};
for (int& x : arr)
x += 5;

// ... is identical to:
for (auto it = arr.begin(); end = arr.end(); it != end; ++it) {
int& x = *it;
x += 5;

}
}

Prefer using the for-range loop for iterating over containers, as it is more readable.
However, it is not usable if the iterator is required, e.g. for removing elements from
the container.

[Slide 297] Input/Output Iterator

• Concepts: std::input_iterator/std::output_iterator
• Required features:

– it1 == it2 – whether iterators point to the same position
– *it, it-> – dereferencing
– ++it, it++ – incrementing
– Input iterator: dereferenced iterator can only be read
– Output iterator: dereferenced iterator can only be written to

• Single-pass only: not decrementable, two iterators might yield different values

[Slide 298] Forward/Bidirectional Iterator

• Concepts: std::forward_iterator/std::bidirectional_iterator
• Forward iterator – required features:

– All features shared by input/output iterator
– Multi-pass guarantee: it1 == it2 implies ++it1 == ++it2

• Bidirectional iterator – forward iterator with:
– --it, it-- – decrementing (walking backwards)

7https://en.cppreference.com/w/cpp/language/range-for

110

https://en.cppreference.com/w/cpp/language/range-for

8.2 Iterators

[Slide 299] Random Access/Contiguous Iterator

• Concepts: std::random_access_iterator/std::contiguous_iterator
• Random access iterators – bidirectional iterator with:

– it[] – random access
– Relational operators, e.g. it1 < it2
– Incrementable/decrementable by any amount, e.g. it + 2, it -= 5

• Contiguous iterator – random access iterator with:
– Elements are stored contiguously in memory
– &*(it + n) equivalent to (&*it) + n

[Slide 300] Implementing Iterators for a Linked List

We will write our custom singly-linked list in C++. We use std::unique_ptr to
handle memory management. We start with the basic implementation:
#include <memory>
#include <utility>
#include <iterator>

template <class T> class ForwardList {
public:
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using const_pointer = const T*;

private:
struct Element {
std::unique_ptr<Element> next;
T value;

// We need two constructors, one for initializing with a copy and
// one for initializing with a move.
Element(std::unique_ptr<Element> next, const T& t)

: next(std::move(next)), value(t) {}
Element(std::unique_ptr<Element> next, T&& t)

: next(std::move(next)), value(std::move(t)) {}

// we could explicitly delete copy/move constructor/assignment -- they
// are not needed. Copying isn’t possible anyway due to unique_ptr

};
std::unique_ptr<Element> first;

public:
ForwardList() = default;
// no custom copy/move constructor/assignment needed -- rule of zero

// Some simple accessors
bool empty() const { return !first; }
reference front() { return first->value; }

111

8 Containers and Iterators

const_reference front() const { return first->value; }

// Prepending elements is fast
void push_front(const T& t) {
first = std::make_unique<Element>(std::move(first), t);

}
void push_front(T&& t) {
first = std::make_unique<Element>(std::move(first), std::move(t));

}
// Deleting the first element is also fast
void pop_front() {
first = std::move(first->next);

}
// Remove all elements, will recursively delete all elements
void clear() { first = nullptr; }

// Now we want to allow iterating over the elements of the list.
// We need to implement begin() and end().
// But we need our own iterator type for this.
// We have a separate const iterator which prohibits modifications
// (and is slightly easier to implement) -- so we’ll do this first.
class const_iterator {
const Element* elem;

public:
// Required member types for iterator
using difference_type = std::ptrdiff_t;
using value_type = T;

// Iterators should be default-constructible
const_iterator(const Element* elem = nullptr) : elem(elem) {}

// Straightforward implementation of required operators
const_reference operator*() const { return elem->value; }
const_pointer operator->() const { return &elem->value; }
const_iterator& operator++() { elem = elem->next.get(); return *this; }
// Post-increment makes copy, calls pre-increment, and returns the old copy
const_iterator operator++(int) { auto tmp = *this; ++*this; return tmp; }
bool operator==(const const_iterator& other) const { return elem == other.elem; }

};

// Let the compiler check that we have implemented all required methods.
static_assert(std::forward_iterator<const_iterator>);

// begin() and end() are simple; for an empty list, begin() == end().
const_iterator begin() const { return const_iterator{first.get()}; }
const_iterator end() const { return const_iterator{}; }

// ...
};

At this point, we can also write some tests for our implementation:
int main() {
ForwardList<int> l;
l.push_front(1);
l.push_front(2);

112

8.2 Iterators

l.push_front(3);
auto it = l.begin();
assert(it == l.begin());
assert(*it == 3);
++it;
assert(it == ++l.begin());
assert(*it == 2);
++it;
assert(*it == 1);
++it;
assert(it == l.end());
for (const int& e : l)
std::println("{}", e);

return 0;
}

[Slide 301] Insertion and Removal

• Containers generally use iterators for removing elements
– Already have some handle to the element ⇝ use it
– Especially important for data structures with non-O(1) access
– Typically: erase(iterator)

• Likewise: insertion at a specific point
• Important: might invalidate the used or some/all other iterators!

In our linked list, we want out non-const iterator not just to expose a mutable
reference to the stored objects, but also to allow removing them. This is not trivial
for a singly-linked list.

How to remove elements from a singly-linked list?
No back pointers – how to update previous next pointer?

There are multiple ways to implement this. One could store a pointer to the previous
element in the iterator. Or, as we will do it, store a pointer to the previous next
pointer (beginning: pointer to the first pointer) only.
class ForwardList {
// ...

class iterator {
friend class ForwardList; // for erase etc.

// NB: pointer to unique_ptr. Pointer to the unique_ptr of the current element.
std::unique_ptr<Element>* elem;
// Access actual element, as the pointer-to-pointer might be null.
Element* element() const { return elem ? elem->get() : nullptr; }

public:
using difference_type = std::ptrdiff_t;
using value_type = T;

113

8 Containers and Iterators

// Iterator should be default-constructible
iterator(std::unique_ptr<Element>* elem = nullptr) : elem(elem) {}

// Nothing special here.
reference operator*() const { return element()->value; }
pointer operator->() const { return &element()->value; }
iterator& operator++() { elem = &element()->next; return *this; }
iterator operator++(int) { auto tmp = *this; ++*this; return tmp; }
bool operator==(const iterator& other) const { return element() == other.element(); }

};

static_assert(std::forward_iterator<iterator>);

// non-const begin() and end()
iterator begin() { return iterator{&first}; }
iterator end() { return iterator{}; }

// Erase invalidates it (we remove the element). Return the iterator to the
// next element.
iterator erase(iterator it) {
// Move next element into previous next pointer or first pointer.
// This overwrites a unique_ptr, causing the element to get deleted.
*it.elem = std::move((*it.elem)->next);
return it;

}
};

We can also test this implementation:
int main() {
ForwardList<int> l;
l.push_front(1);
l.push_front(2);
l.push_front(3);
l.erase(l.begin());
auto it = l.begin();
assert(*it == 2);
++it;
assert(*it == 1);
it = l.erase(it); // erase 1
assert(it == l.end());

for (int& e : l) {
e += 10; // we can modify the elements inside the list
std::println("{}", e);

}
// output: 12

}

The use of overloaded operators for iterators has one major advantage when iter-
ating over contiguous allocations: the iterator can be defined to be just a T*. (Note
how the pointer type fulfills all requirements.)

114

8.3 Vector and Span

8.3 Vector and Span

[Slide 302] Containers in Standard Library: Overview

• Container: object that stores collection of other objects
• Types of elements specified as template parameter(s)
• Sequential: optimized for sequential access

– E.g., std::array, std::vector, std::list
• Associative: sorted, optimized for search (O(log n))

– E.g., std::set, std::map
• Unordered associative: hashed, optimized for search (O(n), amortized O(1))

– E.g., std::unorderd_set, std::unorderd_map

[Slide 303] std::vector8

• Array that can dynamically grow size
• Elements stored contiguously in memory, access via data()
• Preallocates memory for a certain amount of elements (capacity)

– Default: exponential growth; can reserve() to reduce reallocations
• Random access: O(1)
• Insert/remove at end: O(1) (amortized)
• Insert/remove at other position: O(n)

[Slide 304] std::vector Example

std::vector<int> fib = {1,1,2,3};
assert(fib[1] == 1);
int* fib_ptr = fib.data();
assert(fib_ptr[2] == 2);
fib[3] = 43;
fib.data()[1] = 41; // fib is now 1, 41, 2, 43

fib.push_back(5); // fib is now 1, 41, 2, 43, 5
assert(fib.size() == 5);
assert(fib.back() == 5);
fib.pop_back(); // fib is now 1, 41, 2, 43
auto it = fib.begin(); it += 2;
fib.insert(it, 99); // fib is now 1, 41, 99, 2, 43
it = fib.begin() + 2;
fib.erase(it); // fib is now 1, 41, 2, 43

fib.clear(); // remove all elements
assert(fib.empty());

[Slide 305] std::vector Example

Quiz: What is problematic about this code?
8https://en.cppreference.com/w/cpp/container/vector

115

https://en.cppreference.com/w/cpp/container/vector

8 Containers and Iterators

#include <vector>
void func(std::vector<int>& v) {
for (const int& i : v)
if (i > 1)
v.insert(v.begin(), -i);

}

A. Compile error: Cannot get const reference for element.

B. Compile error: insert() needs an index as first parameter.

C. Undefined behavior: after the if body, an invalidated iterator is used.

D. There is no problem.

[Slide 306] std::vector Example

Quiz: How could this code be improved?
#include <array>
#include <cstddef>
#include <vector>
template <size_t N> void func(std::vector<std::array<int, N>>& v, int x) {
std::array<int, N> a;
for (size_t i = 1; i < N; i++) a[i] = a[i-1] * x + i;
v.push_back(a);

}

A. Instead of copying the array, use std::move in push_back.

B. Construct the array in-place in the vector, then modify that.

C. Make a a reference to reduce stack memory usage.

D. There is nothing to improve.

[Slide 307] std::vector: Emplacing Elements

• emplace(_back): construct element in place to avoid copying/moving
• Arguments forwarded to constructor, returns reference to object

struct ExpensiveToCopy { /* ... */ };

std::vector<ExpensiveToCopy> v;
ExpensiveToCopy e1;
e1.foo();
v.push_back(e1); // BAD: copy
v.push_back(std::move(e1)); // Better, but might still be expensive

// Best: element constructed in its final place in the vector
ExpensiveToCopy& e2 = v.emplace_back();
e2.foo();

116

8.3 Vector and Span

[Slide 308] std::vector: Reserving Memory

• reserve: size hint to avoid reallocations
• capacity: get currently allocated size

std::vector<int> v;

v.reserve(1’000’000); // allocate memory for 1M elements
assert(v.capacity() == 1’000’000);
assert(v.size() == 0); // the vector is still empty!

for (int i = 0; i < 1’000’000; ++i) {
vec.push_back(i); // no reallocations in this loop

}

[Slide 309] std::vector Reserve Example

Quiz: What is problematic about this code?
std::vector<int> func(unsigned n) {
std::vector<int> res;
res.reserve(n);
std::vector<int>::iterator it = res.end();
for (size_t i = 0; i < n; i++) {
res.push_back(i * i);
if (i % 3 == 0) it = res.begin() + i;

}
res.push_back(*it);
return res;

}

A. Returning a vector by value is very expensive.

B. The last push_back causes an out-of-bounds write.

C. it is invalidated immediately in the next loop iteration.

D. There is no problem.

[Slide 310] std::span9

• Reference to contiguous array of objects; pair of pointer/length
• Supports iteration, subscript, size(), data()
• subspan(): sub-region, no elements copied

void printValues(std::span<const int> is) {
for (auto i : is) std::print("{}␣", i);

}
std::vector<int> values{1, 2, 3, 4};
std::span<int> valuesRef = values;
valuesRef[2] = 4;
printValues(values); // prints "1 2 4 4 "

9https://en.cppreference.com/w/cpp/container/span

117

https://en.cppreference.com/w/cpp/container/span

8 Containers and Iterators

• Prefer std::span over reference to std::array, std::vector, ...
• Pass std::span by value (it is already a reference)
• Prefer std::span<const T> if possible

As std::span is basically a reference to an array, pass it by value. Taking a
std::span as parameter is preferable over a reference to a vector (if the number
of elements is not modified), as it increases the flexibility of the function.

[Slide 311] std::span Example

Quiz: What is problematic about this code?
void func(std::span<const int> cs, std::vector<int>& v) {
for (int c : cs)
if (c < 0)
v.push_back(c);

}
int main() {
std::vector<int> v{-1, 10, -100, 20};
func(v, v);

}

A. Compile error: Must be const int c : cs

B. Passing a vector as span precludes passing it as reference at the same time.

C. The push_back invalidates the iterator of the loop.

D. There is no problem.

8.4 Map and Set

[Slide 312] std::unordered_map10

• std::unordered_map<KeyT, ValueT> (unordered_map)
– Accepts custom hash and comparison functions as extra template parameters

• Container that stores key–value pairs with unique key
• Internally a hash table, amortized O(1) search/insert/remove

std::unordered_map<unsigned, double> grades;
grades[12340001] = 1.3;
grades.insert({12340042, 2.7});
grades.emplace(12340123, 5.0); // emplace = construct in-place
assert(grades[12340042] == 2.7);

auto it = grades.find(12340001); // search
if (it != grades.end()) { // found
assert(it->first == 12340001); // key

10https://en.cppreference.com/w/cpp/container/unordered_map

118

https://en.cppreference.com/w/cpp/container/unordered_map

8.4 Map and Set

assert(it->second == 1.3); // value
}
assert(grades.contains(12340001));

[Slide 313] Unordered Map: Misleading Usage

Quiz: Which answer is NOT correct?
std::optional<double> lookup(std::unordered_map<unsigned, double>& map,

unsigned key) {
if (map[key])
return map[key];

return -1.0;
}

A. key is always inserted into the map.

B. If the stored value is zero, -1 is returned.

C. map is not modified and therefore should be a const reference.

D. The map is searched twice, which is avoidable and inefficient.

[Slide 314] Unordered Map: Modification

Insertion:
• operator[] – get reference to value, insert and default-construct if missing
• insert – insert if missing and copy/move construct

– Returns std::pair<iterator,bool>; second true iff insertion happened
• emplace – construct in-place if missing
• Iterator invalidation: only on rehash

Removal:
• erase(iterator)/erase(key) – remove element

– Iterator invalidation: only iterator for key
• clear – remove all elements

– Iterator invalidation: all

[Slide 315] std::map11

• std::map<KeyT, ValueT> (<map>) – map sorted by keys
• Interface largely similar to unordered_map

– Also supported upper_bound()/lower_bound() – return iterator to first greater/not
lower element

• Internally a tree (typically R/B-tree), O(log n) search/insert/remove
• Only use of sorted keys are required!

11https://en.cppreference.com/w/cpp/container/map

119

https://en.cppreference.com/w/cpp/container/map

8 Containers and Iterators

[Slide 316] std::unordered_set and std::set

• std::unordered_set<KeyT> (<unordered_set>) – hash set
• std::set<KeyT> (<set>) – set sorted by keys
• Largely similar to maps without values

– Similar internal representation, methods, complexities
• Keys must not be modified

8.5 String

[Slide 317] std::string12

• std::string (<string>) (alias for std::basic_string<char>)
• Class for (mutable) character sequences
• Manages memory and knows its length (unlike C strings)
• Access to underlying C-string: c_str()
• Prefer std::string over C-style strings (char*)!

std::string s; // default-constructs, empty string
assert(s.size() == 0);

std::string s_constructed("my␣literal");
std::string s_assigned = "hi";
s_assigned[0] = ’H’;
std::println("{}␣{}", s_assigned, s_assigned[1]); // prints: "Hi i"

[Slide 318] std::string: Null Bytes

Quiz: What is the output of the following program?
#include <print>
#include <string>
int main() {
std::string s1 = "null\0byte";
std::string s2("null\0byte", 9);
std::println("{}/{}", s1, s2);
return 0;

}

A. Compile error: String literals cannot include null-bytes

B. Undefined behavior: std::string cannot include null-bytes

C. null0byte/null0byte

D. null/null0byte

E. null/null

12https://en.cppreference.com/w/cpp/header/string

120

https://en.cppreference.com/w/cpp/header/string

8.5 String

[Slide 319] std::string: Operations

• ==, <=>: lexicographical comparison of full strings
• size(): number of characters in string
• empty(): whether string is empty
• find(): offset of first occurrence of substring, or std::string::npos
• append(), +=: append string/char, might cause memory allocation
• +: concatenate into new heap-allocated string
• substr(): new std::string containing substring

– This is often not what you want!

Be careful about string and especially constructing new strings (e.g., by passing
them by value, substr, operator+): these create a new copy of the string, which
often means a new heap allocation, which is expensive. Therefore, use string views
where possible.

[Slide 320] std::string_view13

• Read-only view on existing string
• Similar to span<const char>: just a pointer and a length
⇝ Creation, substring, copying is constant time (linear for std::string)
• Prefer std::string_view over std::string/std::string&

std::string s = "garbage␣garbage␣garbage␣interesting␣garbage";
std::string sub = s.substr(24,11); // With string: O(n)
// With string view:
std::string_view s_view = s; // O(1)
std::string_view sub_view = s_view.substr(24,11); // O(1)

bool is_eq_naive(std::string a, std::string b) {return a == b; }
bool is_eq_views(std::string_view a, std::string_view b) { return a == b; }
is_eq_naive("abc", "def"); // 2 allocations at runtime
is_eq_with_views("abc", "def"); // no allocation at runtime

[Slide 321] std::string: Implementation

• Different standard libraries have different implementations14

• Typically: pointer, size, capacity
– Pointer (can) to heap memory, deleted on destruction

• Typically: small-buffer optimization
– Most strings are small, heap allocations are expensive
⇝ Store small buffer (e.g., 15 bytes) inline in std::string
– Downside: more operations invalidate iterators
– Permitted by C++ standard

13https://en.cppreference.com/w/cpp/string/basic_string_view
14https://devblogs.microsoft.com/oldnewthing/20240510-00/?p=109742

121

https://en.cppreference.com/w/cpp/string/basic_string_view
https://devblogs.microsoft.com/oldnewthing/20240510-00/?p=109742

8 Containers and Iterators

[Slide 322] Small Buffer Optimization

Quiz: Why does std::vector not implement small-buffer optimization?

A. Not very useful ⇒ no one implemented it so far.

B. Insertion would no longer be amortized O(1).

C. Reduce memory usage by not having inline space.

D. Moving a vector must not invalidate iterators.

[Slide 323] Containers and Iterators – Summary

• Standard library provides several utility and container templates
• Simple pairs/tuples; can be extracted with structured bindings
• Iterators provide unified pointer-like interface for container element access
• Modifications of containers typically invalidate iterators
• Vector: dynamically sized array, most popular container
• (Unordered) map/set: associative containers

– Ordered containers typically less efficient
• String: character sequence with managed storage
• String view/span: view into array or string
• Containers good enough to not immediately write a custom implementation

[Slide 324] Containers and Iterators – Questions

• When do iterators get invalidated? How does this vary for different containers and
their operations?

• Why does iterator invalidation frequently cause problems in practice?
• How does a range-based for loop work?
• Why is are unordered maps/sets preferable over ordered maps/sets?
• What are the benefits of std::string over C-style strings?
• When to use std::span/std::string_view and pass them as parameters?
• Why is small-buffer optimization often beneficial/wanted?

122

9 Algorithms, Functions, and Lambdas

9.1 Function Objects

[Slide 326] Function Objects1

• Functions are no objects
– Cannot be passed as parameters, no state, etc.

• FunctionObject named requirement for some type T:
– T must be an object
– For an instance f of T: f(args) must be defined

• Also referred to as functors

[Slide 327] Function Pointers2

• Functions are not objects, but have addresses
– Location in memory where the code resides

⇝ Allows declaration of function pointers: ret-ty (*identifier)(arg-tys)
• Function pointers satisfy requirements of FunctionObject

int add(int p1, int p2) { return p1 + p2; }
int callFn(int (*fn)(int, int), int p1, int p2) {
return fn(p1, p2); // automatic dereference, equivalent to (*fn)(p1, p2)

}

int main() {
// add gets implicitly converted to function pointer, equiv. to &add
int res = callFn(add, 1, 1); // 2

}

Prefer type aliases (e.g., using BinaryFn = int(*)(int, int);) when working with
function pointer types. Program can quickly become hard to read otherwise.

[Slide 328] Function Pointers

Quiz: What is the output of the program?
#include <print>
int fn(int p, int q = 1) { return p * q; }
int callFn(int (*fn)(int), int p) {
return (*fn)(p);

1https://en.cppreference.com/w/cpp/named_req/FunctionObject
2https://en.cppreference.com/w/cpp/language/pointer

123

https://en.cppreference.com/w/cpp/named_req/FunctionObject
https://en.cppreference.com/w/cpp/language/pointer

9 Algorithms, Functions, and Lambdas

}
int main() {
std::println("{}", callFn(fn, 1));

}

A. Compile error: fn has type int(int, int)

B. Compile error: cannot dereference function pointer

C. Undefined behavior: default arguments become undefined

D. Guaranteed output: 1

[Slide 329] Member Function Pointers

• Non-static member functions take an implicit parameter, this
⇒ Special pointers to members of a class

struct S {
int a;
int x(int b, int c) { return a + b + c; }

};

int main() {
int (S::* memberFnPtr)(int, int) = &S::x;

S s{32};
int r1 = (s.*memberFnPtr)(2, 8); // 42
S* sp = &s;
int r2 = (sp->*memberFnPtr)(2, 8); // 42

}

Member function pointers are rarely needed. There are also member data pointers
with a similar syntax, which are even more exotic and rarely useful.

[Slide 330] Stateful Function Objects

• So far: functions are stateless have to pass all state as parameters
• Function objects can be implemented as regular class
⇝ Keep arbitrary state as members

struct Adder {
int v;
int operator()(int param) const {
return param + v;

}
};
int main() {
Adder add42{42};
int a = add42(10); // 52
add42.v = 10;
int b = add42(0); // 10

}

124

9.1 Function Objects

[Slide 331] Stateful Function Objects

Quiz: What is the output of the program?
#include <print>
struct Accumulator {
int v;
int operator()(int param) {
return v += param;

}
};
int main() {
Accumulator acc{10};
int a = acc(10) + acc(20);
int b = acc(1) + acc.v;
std::println("{}/{}", a, b);

}

A. (compile error) B. (multiple outputs correct) C. 60/81 D. 60/82 E. 70/82

[Slide 332] Lambda Expressions (1)3

• Function pointers so far have some limitations:
– Cannot have “local” functions within other functions
– Cannot capture environment – have to pass all state as parameters

• Lambda expressions: construct closure (function with environment)
• [captures](params) -> ret-ty { body }

– Captures specify parts of environment that should be stored, can be empty
– Lambda without captures are implicitly converted to function pointers
– Return type can be omitted if deducible from return statements in body

• Lambda expressions have a unique, unnamed type
⇝ Rely on auto/argument deduction when assigning lambda

[Slide 333] Lambda Expressions

int callFn(int (*fn)(int, int), int p1, int p2) {
return fn(p1, p2); // automatic dereference, equivalent to (*fn)(p1, p2)

}

int main() {
auto lambda = [](int p1, int p2) {
return p1 + p2;

};

// lambda gets implicitly converted to function pointer
int res = callFn(add, 1, 1); // 2
int foo = lambda(2, 4); // 6

}

3https://en.cppreference.com/w/cpp/language/lambda

125

https://en.cppreference.com/w/cpp/language/lambda

9 Algorithms, Functions, and Lambdas

[Slide 334] Lambda Expressions

• Lambda types are really unique:
// ERROR: Compilation will fail due to ambiguous return type
auto getFunction(bool first) {
if (first) {
return []() {
return 42;

};
} else {
return []() {
return 42;

};
}

}

[Slide 335] Lambda Captures

• Capture: specify what constitutes the state of a lambda expression
• Refer to automatic variables/this in surrounding scopes
• Captured variables can be used in lambda like regular variables
• Capture by-copy : [var] or [var = initializer]

– Variable copied into lambda state on creation
• Capture by-reference: [&var] or [&var = initializer]

– Variable reference stored lambda state on creation
• Each variable may be captured at most once

[Slide 336] Lambda Captures: Example

int main() {
int i = 42;

// Lambda stores a copy of i
auto lambda1 = [i]() { return i + 42; };
// Lambda stores a reference to i
auto lambda2 = [&i]() { return i + 42; };

i = 0;

int a = lambda1(); // a = 84
int b = lambda2(); // b = 42

}

[Slide 337] Lambda Capture: Default Captures

• First capture can be a capture-default: = (copy)/& (reference)
• Allows use of any variable in surrounding scope
• Diverging capture types can be specified for individual variables

int main() {
int i = 0;

126

9.1 Function Objects

int j = 42;

auto lambda0 = [=](){}; // j and i by-copy
auto lambda1 = [&](){}; // j and i by-reference
auto lambda2 = [&, i](){}; // j by-reference, i by-copy
auto lambda3 = [=, &i](){}; // j by-copy, i by-reference
auto lambda4 = [&, &i](){}; // ERROR: non-diverging capture types
auto lambda5 = [=, i](){}; // ERROR: non-diverging capture types

}

[Slide 338] Lambda Captures

Quiz: What is problematic about this code?
auto createAdder(int n) {
return [&](int x) {
return x + n;

};
}
int main() {
auto add42 = createAdder(42);
return add42(10);

}

A. Compile error: return type must be named ⇒ cannot return lambda.

B. Compile error: cannot copy lambda.

C. Undefined behavior: function call uses a dangling reference.

D. No problem: the program exits with status 52.

[Slide 339] Lambda Captures

Quiz: What is the output of the program?
struct Too {
int x;
auto makeBuzzer() {
return [*this](int y) { return x + y; };

}
};
int main() {
auto buzzer = Too{32}.makeBuzzer();
std::println("{}", buzzer(10));

}

A. Compile error: cannot capture *this.

B. Compile error: x is not captured.

C. Undefined behavior: x used after Too got destroyed.

D. Guaranteed output: 42

127

9 Algorithms, Functions, and Lambdas

[Slide 340] Lambda Capture: this

• *this (copy)/this (reference)
struct Foo {
int i = 0;

void bar() {
auto lambda1 = [*this]() { return i + 42; };
auto lambda2 = [this](){ return i + 42; };

i = 42;

int a = lambda1(); // a = 42
int b = lambda2(); // b = 84

}
};

[Slide 341] std::function4

• std::function: general-purpose wrapper for all callable targets
• Allows storing, copying, and calling the wrapped target
• Often adds considerable overhead ⇝ avoid where possible

#include <functional>

std::function<int()> getFunction(bool first) {
int a = 14;
if (first)
return [=]() { return a; };

else
return [=]() { return 2 * a; };

}

int main() {
return getFunction(false)() + getFunction(true)(); // 42

}

[Slide 342] Passing Function Objects as Parameters

#include <functional>

int bad(int (*fn)()) { return fn(); }
int slow(const std::function<int()>& fn) { return fn(); }
template <typename Fn> int good(Fn&& fn) { return fn(); }

struct Functor {
int operator()() { return 42; }

};
int main() {

Functor ftor;
bad([]() { return 42; }); // OK
bad(ftor); // ERROR!

4https://en.cppreference.com/w/cpp/utility/functional/function

128

https://en.cppreference.com/w/cpp/utility/functional/function

9.2 Algorithms

slow([]() { return 42; }); // OK
slow(ftor); // OK
good([]() { return 42; }); // OK
good(ftor); // OK

}

Usually, code that intends to call function objects should rely on templates. Function
pointers severely limit the usability of the function. std::function is more flexible,
but is quite expensive to create and use.

Quiz: Have you filled out the lecture evaluation?

A. Yes!

B. Of course!

C. Not yet, but I really, really promise to do it later today.

9.2 Algorithms

[Slide 344] Algorithms Library5

• C++ standard library provides several functions for sorting, searching, etc.
• Operations on ranges of elements [begin, end)

– Operate on appropriate iterator types (incl. pointers)
• Mostly in <algorithm>, but also <numeric>, <memory>, <cstdlib>

[Slide 345] std::sort6

• Sort elements in range [begin, end) on RandomAccessIterators
• Elements must be swappable, move-assignable and move-constructible
• O(n log n) comparisons, not stable

#include <algorithm>
#include <vector>

int main() {
std::vector<unsigned> v = {3, 4, 1, 2};
std::sort(v.begin(), v.end()); // 1, 2, 3, 4

}

[Slide 346] Custom Comparison7

• Comparator supplied as functor: bool cmp(const T&, const T&)
• Must establish strict weak ordering: true iff a < b

5https://en.cppreference.com/w/cpp/algorithm
6https://en.cppreference.com/w/cpp/algorithm/sort
7https://en.cppreference.com/w/cpp/named_req/Compare

129

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/algorithm/sort
https://en.cppreference.com/w/cpp/named_req/Compare

9 Algorithms, Functions, and Lambdas

– !(a < a), a < b ⇒ !(b < a), a < b && b < c ⇒ a < c, !(a < b) && !(b
< a) ⇒ a ≈ b

#include <algorithm>
#include <vector>

int main() {
std::vector<unsigned> v = {3, 4, 1, 2};
std::sort(v.begin(), v.end(), [](unsigned lhs, unsigned rhs) {
return lhs > rhs;

}); // 4, 3, 2, 1
}

[Slide 347] Other Sorting Operations

• std::sort is unstable (order of equal-ranked elements not maintained)
• std::stable_sort is stable
• std::partial_sort to find smallest n elements

– More efficient if only top-k elements are interesting
• std::is_sorted to check whether a range is sorted
• std::is_sorted_until to find first unsorted element
• std::partition to reorder elements based on result of predicate
• Some others, see reference

[Slide 348] Searching – Unsorted8

• Find first element, returns iterator
– std::find, std::find_if, std::find_if_not

• Count matching elements: std::count/std::count_if
• Search for a range of elements: std::search
• Check if condition holds: any_of, all_of, none_of
• Many more operations, see reference

[Slide 349] Searching – Unsorted

#include <algorithm>
#include <vector>
int main() {
std::vector<int> v = {2, 6, 1, 7, 3, 7};
auto res1 = std::find(vec.begin(), vec.end(), 7);
int a = std::distance(vec.begin(), res1); // 3
auto res2 = std::find(vec.begin(), vec.end(), 9);
assert(res2 == vec.end());

auto res1 = std::find_if(vec.begin(), vec.end(),
[](int val) { return (val % 2) == 1; });

int a = std::distance(vec.begin(), res1); // 2
auto res2 = std::find_if_not(vec.begin(), vec.end(),

8https://en.cppreference.com/w/cpp/algorithm#Non-modifying_sequence_operations

130

https://en.cppreference.com/w/cpp/algorithm#Non-modifying_sequence_operations

9.2 Algorithms

[](int val) { return val <= 7; });
assert(res2 == vec.end());

}

[Slide 350] Searching – Sorted

• On sorted ranges, binary search is more efficient
• O(log n) for RandomAccessIterator

– O(n) when called with ForwardIterator !
• std::binary_search – check whether element is contained
• std::lower_bound – iterator to first element ≥ search value
• std::upper_bound – iterator to first element > search value
• std::equal_range – pair of lower_bound and upper_bound

[Slide 351] Searching – Sorted

#include <algorithm>
#include <vector>
#include <cassert>
int main() {
std::vector<int> v = {1, 2, 2, 3, 3, 3, 4};
assert(true == std::binary_search(v.begin(), v.end(), 3));
assert(false == std::binary_search(v.begin(), v.end(), 0));

assert(v.begin()+3 == std::lower_bound(v.begin(), v.end(), 3));
assert(v.begin() == std::lower_bound(v.begin(), v.end(), 0));
assert(v.begin()+6 == std::upper_bound(v.begin(), v.end(), 3));
assert(v.end() == std::upper_bound(v.begin(), v.end(), 4));

}

[Slide 352] Searching and Sorting

• Sort + binary search useful if:
– Separated insert and lookup phases
– Many searches are required

• Sorting might not be a good idea if:
– Order cannot be changed and would need to make copy
– There are frequent updated or insertions

[Slide 353] Permutations9

• Functions for iterating over permutations in lexicographical order
• std::next_permutation

– false if permutation was the last permutation (sorted in descending order)
• std::prev_permutation

– false if permutation was the last permutation (sorted in ascending order)
9https://en.cppreference.com/w/cpp/algorithm/next_permutation

131

https://en.cppreference.com/w/cpp/algorithm/next_permutation

9 Algorithms, Functions, and Lambdas

#include <algorithm>
#include <vector>
#include <cassert>
int main() {
std::vector<int> v = {1, 2, 3};
std::next_permutation(v.begin(), v.end()); // true, v == {1, 3, 2}
std::next_permutation(v.begin(), v.end()); // true, v == {2, 1, 3}
std::prev_permutation(v.begin(), v.end()); // true, v == {1, 3, 2}
std::prev_permutation(v.begin(), v.end()); // true, v == {1, 2, 3}
std::prev_permutation(v.begin(), v.end()); // false, v == {3, 2, 1}

}

[Slide 354] Additional Functionality

• std::min_element/std::max_element – operate over range of elements
• std::merge/std::inplace_merge
• std::copy – copy elements
• Many set operations, sampling, heap operations, . . .
• std::iota – initialize with increasing values

#include <numeric>
#include <memory>

int main() {
auto heapArray = std::make_unique<int[]>(5);
std::iota(heapArray.get(), heapArray.get() + 5, 2);
// heapArray is now {2, 3, 4, 5, 6}

}

9.3 Ranges

[Slide 355] Ranges10

• Ranges provide an abstraction of iterator pairs seen so far
• Views of ranges can be manipulated through adaptors

#include <ranges>
#include <print>
#include <map>
int main() {
std::map<int, int> map{{10, 22}, {1, 2}, {3, 4}};
for (auto key : map | std::views::keys)
std::println("{}", key);

// Prints: 1 3 10
}

[Slide 356] Range Factories

• Most containers can be used directly as ranges

10https://en.cppreference.com/w/cpp/ranges

132

https://en.cppreference.com/w/cpp/ranges

9.3 Ranges

– Details specified in range concepts, ranges::range and ranges::viewable_range
(for ranges convertible into view for further transformation)

• Range factories: create commonly used views without dedicated container
– views::empty, views::single, views::iota

#include <ranges>
#include <print>
int main() {
for (auto i : std::views::iota(1, 5))
std::println("{}", i);

// Prints: 1 2 3 4
}

[Slide 357] Range Adaptors

• (Lazily) Transform elements of range, return a view
• Might take additional arguments for transformation
• Can be chained, either by C2(C1(R)) or R | C1 | C2

#include <ranges>
#include <print>
#include <map>

int main() {
std::map<int, int> map{{1, 2}, {3, 4}};
for (auto key : (map | std::views::keys | std::views::reverse))
std::println("{}", key);

auto square = [](auto x) { return x * x; };
for (auto sq : (map | std::views::keys | std::views::transform(square)))
std::println("{}", sq);

}

[Slide 358] Range Adaptors

Quiz: What is the output of the program?
#include <print>
#include <ranges>
#include <vector>
int fn() {
auto print = [](int x) { std::print("{}␣", x); return x; };
std::vector<int> vec{1, 2, 3, 4, 5, 6};
auto v = vec | std::views::reverse | std::views::transform(print)

| std::views::drop(2);
return *v.begin();

}
int main() {
std::println("{}", fn());

}

A. (compile error) B. 6 5 4 3 2 1 4 C. 6 5 4 4 D. 4 4

133

9 Algorithms, Functions, and Lambdas

9.4 Random Number Generators

[Slide 359] Random Number Generators11

• C++ standard library defines pseudo-random number generators/distributions
• PRNGs can (and should) be seeded; not thread-safe
• Example: std::mt19937 (32-bit)/std::mt19937_64

#include <cstdint>
#include <random>
int main() {
std::mt19937 engine(42); // seed = 42
unsigned a = engine(); // a == 1608637542
unsigned b = engine(); // b == 3421126067

}

Some implementations of rand produce very low quality random numbers. The
Mersenne Twister (as implemented by std::mt19937) often provides much better
random numbers and is reasonably efficient.

[Slide 360] Other Random Number Generators

• std::mt19937 provides typically good enough pseudo-randomness
• std::random_device provides true randomness

– Typically rather slow, might degrade to pseudo-randomness if no entropy is
available

– Not good for testing, where determinism is wanted
– Typical use: get seed std::mt19937 engine(std::random_device()());

• std::default_random_engine – implementation-defined
– Non-portable

• rand() from <cstdlib>

– Quality of random numbers often rather bad
– Avoid, strongly prefer C++ random functionality

[Slide 361] Distributions

• Random number generators have fixed output range, approximately uniform
• Distributions transform output of RNG

– Uniform, normal, Bernoulli, Possion, . . .
#include <random>
int main() {
std::mt19937 engine(42);
std::uniform_int_distribution<int> dist(-2, 2); // range [-2, 2]
int d1 = dist(engine); // d1 == -1
int d2 = dist(engine); // d2 == -2

}

11https://en.cppreference.com/w/cpp/header/random

134

https://en.cppreference.com/w/cpp/header/random

9.4 Random Number Generators

[Slide 362] Remainder/Modulo for Uniform Distributions

Quiz: What is problematic about this function?
unsigned genRand8() { /* perfect RNG for 3 bits of randomness */ }
unsigned rollDice() {
return genRand8() % 6 + 1;

}

A. Integer remainder is a very slow operation.

B. Some values are more likely than others.

C. There is no problem.

Here is an unproblematic alternative implementation:
#include <random>
int main() {
// Use random device to seed generator
std::random_device rd;
// Use pseudo-random generator to get random numbers
std::mt19937 engine(rd());
// Use distribution to generate dice rolls
std::uniform_int_distribution<> dist(1, 6);
int d1 = dist(engine); // gets random dice roll
int d2 = dist(engine); // gets random dice roll

}

[Slide 363] Algorithms, Functions, and Lambdas – Summary

• Function pointers can refer to functions, but have no state
• Member function pointers can refer non-static member functions
• Functors are a concept representing callable objects
• Lambdas are unnamed structures that can capture values
• Several algorithms are provided in the standard library
• Ranges provide an abstraction for iterator pairs
• Ranges can be transformed, creating views
• (Pseudo) random number generators and distributions are provided

[Slide 364] Algorithms, Functions, and Lambdas – Questions

• What are requirements for a type to be a function object?
• What is the type of a lambda expression?
• Where are lambda captures stored?
• When can by-reference captures be problematic?
• How to write functions that take functors as argument?
• How to find the insertion point for some value into a sorted array?
• Why is modulo for random numbers generally not a good idea?

135

10 Exceptions and Advanced Memory
Management

10.1 Exceptions

[Slide 366] C++ Exceptions1

• Exceptions have similar semantics as in other languages
⇒ Transfer control and propagate information up the call stack
• Thrown by throw, new, and some standard library functions
• Exceptions can be handled in try–catch blocks
• Unhandled exceptions lead to termination
• When transferring control up the call stack, the runtime performs stack unwinding
• All objects with automatic storage duration are destructed
⇝ Correct behavior of RAII classes

[Slide 367] Throwing Exceptions2

• throw expression ;
• Objects of any complete type can be thrown
• Exception object (heap-allocaetd) copy-initialized with expression
• Typically a subclass of std::exception

#include <exception>
void foo(unsigned i) {
if (i == 42)
throw 42;

throw std::exception();
}

[Slide 368] Handling Exceptions3

• try { ... } catch (declaration) { ... };
• Exceptions occuring during try-block can be handled in catch-block
• Declaration type determines which type of exception is caught

#include <exception>
void bar() {
try {

1https://en.cppreference.com/w/cpp/language/exceptions
2https://en.cppreference.com/w/cpp/language/throw
3https://en.cppreference.com/w/cpp/language/catch

137

https://en.cppreference.com/w/cpp/language/exceptions
https://en.cppreference.com/w/cpp/language/throw
https://en.cppreference.com/w/cpp/language/catch

10 Exceptions and Advanced Memory Management

foo(42);
} catch (int i) { // handle exception of type int
} catch (const std::exception& e) { // handle exception of type std::exception
} catch (...) { // catch-all
}

}

[Slide 369] Exceptions: Example

Quiz: What is problematic about this code?
#include <memory>
#include <print>
int foo(const int& x) { return x != 0 ? throw x : x; }
int bar(int x) { std::unique_ptr<int> ui(new int);

*ui = x * 2; return foo(*ui); }
int main() {
try { std::print("ok!␣{}\n", bar(21));
} catch (int x) {}

}

A. Compile error: throw is a statement, not an expression.

B. Memory leak: Memory from new is leaked on exception.

C. Unhandled exception: the exception has type const int&.

D. Nothing: the program terminates with exit code zero.

[Slide 370] Exceptions: Miscellaneous

• In a catch block, the current exception can be re-thrown
– Syntax: throw;
– E.g., to clean up resources and propagate exception further

• Functions can be marked as noexcept
– Part of the function type
– Indicates that the function will never throw an exception
– Any exceptions that would propagate cause program termination

• Destructors, move constructors/assignment must not throw exceptions

Technically, the last point is not quite accurate. Destructors are noexcept by default,
but can theoretically also throw exceptions (by marking them as noexcept(false)).
This is highly problematic: if the destructor gets called during exception handling,
the program terminates, because no two exceptions can be handled at the same time.

Move constructors/assignments should be explicitly marked as noexcept. Other-
wise, some containers that guarantee strong exception guarantees must resort to less
efficient copying (e.g., growing a vector either succeeds or does nothing when one

138

10.1 Exceptions

element could not be copied, but will never leave the vector in a corrupt state).

[Slide 371] Exceptions: Constructors

Quiz: Which answer is correct?
#include <print>
struct A { A() { throw 1; } };
struct B {

A a;
B() try : a() {
} catch (int x) {

std::println("whoops?␣{}", x);
throw; // rethrow exception

}
};
int main() { try { B b; } catch (int x) { return x; } }

A. Compile error: Cannot use try outside function body.

B. The throw; is not necessary.

C. a is life in the catch block of the constructor.

D. No object of type A can be constructed, but objects of type B can be.

[Slide 372] Exceptions: Performance and Code Size Considerations

• Exception handling (stack unwinding) is rather expensive
• Low overhead if no exceptions are thrown

⇒ In any case, exceptions should be used rarely
• The mere possibility of exceptions inhibits some optimizations

– Increased control flow complexity, more state must be kept in stack memory
• For every possibly throwing call, corresponding cleanup code must be generated
• Unwind tables that map code location to cleanup landing pad can grow large
⇝ Enabling exceptions can have substantial code size impact

– To disable exceptions: -fno-exceptions

[Slide 373] Exceptions: Guidelines

• Use exceptions only in rare cases
• E.g., dynamic runtime errors (e.g., malformed data)
• Do not use exceptions for programmer errors

– Use assertions for this
• Do not use exceptions for control flow

– Use regular control flow operations for this
• Generally: exceptions should be avoided where possible
• When not using exceptions at all, disable them via a compiler flag

139

10 Exceptions and Advanced Memory Management

The increased code size together with the increased code complexity and reduced
readability are the reason for some projects/companies to outright ban C++ excep-
tions.

10.2 Explicit Object Construction

[Slide 374] operator new

• operator new (<new>) can take arguments4

• Default, implicitly: operator new (size)
• Example: overload with extra arg std::nothrow_t

#include <new>
#include <array>
#include <print>
struct A { /* ... */ };
int main() {
// Will throw std::bad_alloc
auto* p1 = new std::array<int, 100000000000>();
// Will return nullptr on allocation failure
auto* p2 = new(std::nothrow) std::array<int, 100000000000>();
if (!p2)
std::println("allocation␣failed!");

}

[Slide 375] Manually managing memory

• Sometimes, the default memory management operations are not enough
– E.g., repeatedly calling new (explicit or implicit) is too expensive
– E.g., for reusing already available memory

⇝ Placement new: construct object in already allocated storage
• Manually call constructor and destructor

[Slide 376] Placement new

• operator new(size, void* ptr)

– Returns ptr without doing any allocation
• Alignment must be ensured manually

#include <cstddef>
#include <new>
struct A { /* ... */ };
int main() {
alignas(A) std::byte buffer[sizeof(A)];
A* a = new(buffer) A();
// ... do something with a
a->~A(); // we must explicitly call the destructor

}

4https://en.cppreference.com/w/cpp/memory/new/operator_new

140

https://en.cppreference.com/w/cpp/memory/new/operator_new

10.2 Explicit Object Construction

[Slide 377] Placement new and Lifetime

• Placement new ends lifetime of overlapping objects; creates new object
• Lifetime is nested within the underlying storage

struct A { };
int main() {
A* a1 = new A(); // lifetime of a1 begins, storage begins
a1->~A(); // lifetime of a1 ends
A* a2 = new (a1) A(); // lifetime of a2 begins
delete a2; // lifetime of a2 ends, storage ends

}

[Slide 378] How to Deallocate?

Quiz: How to deallocate s1? What to write instead of XXX?
template <class T, size_t N>
class TAlloc {
alignas(T) std::byte buffer[sizeof(T[N])];
size_t cnt = 0;

public:
T* make(T&& t) {
void* vp = &buffer[sizeof(T)*cnt++];
T* r = reinterpret_cast<T*>(vp);
::new(r) T(std::move(t));
return r;

}
};
int main() {
TAlloc<std::string, 3> ta;
auto* s1 = ta.make("Hello␣World!");
// XXX

}

A. delete(s1);

B. s1->˜string();

C. s1->˜basic_string();

D. ta.˜TAlloc();

E. Nothing, the strings are automatically freed at the end of main.

A typical implementation would destruct all allocated instances in the destructor of
TAlloc.

[Slide 379] Placement new with unique_ptr

• std::unique_ptr<T, Deleter> – specify type of deleter
• Second parameter in constructor to specify deleter instance
• Default deleter calls delete

141

10 Exceptions and Advanced Memory Management

• For use with non-standard allocation, a custom deleter is required
• Code that uses custom allocators is typically rather complex ⇒ unique_ptr is often

not particularly useful in such contexts

[Slide 380] Overloading operator new

• Classes can overload operator new and operator delete
• Can also provide overloads with extra arguments
• Rarely useful, e.g.:

– Allocating extra storage after/before the object

10.3 Unions

[Slide 381] union

• Class type that holds only one of its non-static members at a time
• Storage large enough to hold largest element
• All data members have the same address
• Writing to a union member activates it
• Reading an inactive union member is undefined behavior

union MyUnion { float f; long l; short a[2]; };
static_assert(sizeof(MyUnion) == sizeof(long));
int main() {
MyUnion u; // f active, default-initialized
u.f = 123.0; // f active
u.a[1] = 12; // a active
return u.a[1]; // ok

}

[Slide 382] Union: Example

Quiz: What is the output of the program?
#include <print>
int main() {
using Converter = union { float f; unsigned u; };
std::println("{:08x}", Converter{32.5f}.u);
return 0;

}

A. Compile error: Cannot have untyped union.

B. Compile error: Union initializer is ambiguous.

C. Undefined behavior: Program reads inactive union member.

D. The integer representation of 32.5f (42020000).

142

10.4 Implementing a Vector

[Slide 383] std::bit_cast5

• For bitwise reinterpretation of object representations, use std::bit_cast<TargetTy>()
from <bit>

– Do not use union for this – C++ differs from C here
– Do not use reinterpret_cast

[Slide 384] Union with Non-Primitive Types

• unions can have non-primitive members
• union doesn’t know which member is active...
• Lifetime needs to be managed explicitly outside of the union
• Typical use as part of a struct which tracks active element
• Can be used to implement more efficient variant
• Very difficult to get right
⇝ Prefer std::variant

[Slide 385] Union with Non-Primitive Types: Example

union U {
std::vector<int> v;
std::string s;
// needs explicit destructor -- can’t do anything!
// union doesn’t know which member is active
~U() {}

};
int main() {
U u{}; // constructs first element
u.v.push_back(123);
u.v.~vector<int>(); // lifetime of u.v ends
new(&u.s) std::string("123"); // lifetime of u.s begins
std::println("{}", u.s);
u.s.~basic_string(); // lifetime of u.s ends
// ~U() will be called, but is defined to do nothing

}

10.4 Implementing a Vector

[Slide 386] Implementing our own Vector

• At this point, we can implement our own vector

(see script)

template <class T>
class Vec {
T* ptr = nullptr;

5https://en.cppreference.com/w/cpp/numeric/bit_cast

143

https://en.cppreference.com/w/cpp/numeric/bit_cast

10 Exceptions and Advanced Memory Management

size_t sz = 0;
size_t cap = 0;

public:
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using const_pointer = const T*;
using iterator = T*;
using const_iterator = const T*;

Vec() = default;

~Vec() {
reset();

}

Vec(const Vec&) = delete;
Vec(Vec&& other) noexcept {
*this = std::move(other);

}

Vec& operator=(const Vec&) = delete;
Vec& operator=(Vec&& other) noexcept {
if (&other == this)
return *this;

reset();
ptr = other.ptr;
sz = other.sz;
cap = other.cap;
other.ptr = nullptr;
other.sz = 0;
other.cap = 0;
return *this;

}

pointer data() { return ptr; }
const_pointer data() const { return ptr; }
size_type size() const { return sz; }
size_type capacity() const { return cap; }
bool empty() const { return !size(); }

reference operator[](size_type idx) { return data()[idx]; }
const_reference operator[](size_type idx) const { return data()[idx]; }
reference front() { return data()[0]; }
const_reference front() const { return data()[0]; }
reference back() { return data()[size() - 1]; }
const_reference back() const { return data()[size() - 1]; }

iterator begin() { return data(); }
iterator end() { return data() + size(); }

144

10.4 Implementing a Vector

const_iterator begin() const { return data(); }
const_iterator end() const { return data() + size(); }
const_iterator cbegin() const { return data(); }
const_iterator cend() const { return data() + size(); }

void push_back(const T& v) {
if (size() == capacity())
grow((capacity() + 1) * 2);

new(end()) T(v);
sz++;

}
void push_back(T&& v) {
if (size() == capacity())
grow((capacity() + 1) * 2);

new(end()) T(std::move(v));
sz++;

}
void pop_back() {
back().~T();
sz--;

}

void clear() {
for (pointer p = begin(); p != end(); ++p)
p->~T();

sz = 0;
}

void reset() {
if (ptr) {
clear();
free(ptr);
ptr = nullptr;
cap = 0;

}
}

private:
void grow(size_type newCap) {
// NB: this could be wrong due, T might require more alignment.
T* newPtr = static_cast<T*>(malloc(newCap * sizeof(T)));
for (pointer p = begin(), pn = newPtr; p != end(); ++p, ++pn) {
new(pn) T(std::move(*p));
p->~T();

}
free(ptr);
ptr = newPtr;
cap = newCap;

}
};

struct Demo {
// Always points to this, *not* updated on copy/move!
// We allocate this pointer on the heap and use LeakSanitizer

145

10 Exceptions and Advanced Memory Management

// to identify objects that were not freed.
Demo** check;
int val;

Demo(int val) : check(new Demo*(this)), val(val) {}
~Demo() {
assert(this == *check);
delete check;

}

Demo(const Demo&) = delete;
Demo(Demo&& other) : check(new Demo*(this)) {
val = other.val;

}
Demo& operator=(const Demo&) = delete;
Demo& operator=(Demo&& other) {
val = other.val;
return *this;

}
};

int main() {
Vec<Demo> v, w;
assert(v.empty());
v.push_back(12);
assert(v.size() == 1);
assert(v[0].val == 12);
w.push_back(14);
assert(w.size() == 1);
assert(w[0].val == 14);

size_t oldCap = v.capacity();
w = std::move(v);
assert(v.empty());
assert(v.capacity() == 0);
assert(w.size() == 1);
assert(w.capacity() == oldCap);
assert(w[0].val == 12);
w.push_back(42);
w.push_back(20);
w.push_back(21);
w.push_back(22);
w.push_back(23);
w.pop_back();
assert(w.size() == 5);

Vec<Demo> x(std::move(w));
assert(w.empty());
assert(w.capacity() == 0);
assert(x.size() == 5);
assert(x[0].val == 12);
assert(x[1].val == 42);

}

146

10.4 Implementing a Vector

[Slide 387] Allocating Raw/Uninitialized Memory

• C malloc/free often work, but not always
• Problem: type might have increased alignment requirement
• std::allocator<T>6 respects additional requirements

– allocate(elementCount) – allocate an array suitable for n objects
– deallocate(ptr, elementCount) – deallocate previously allocated memory

Providing the size for the deallocation allows for a more efficient implementation of
allocators, as they don’t have to track the size of allocated memory regions themselves.

We can adjust our vector to use an allocator:
template <class T>
class Vec {
// ...
[[no_unique_address]] std::allocator<T> alloc;

// ...
// ... replace malloc/free with allocate/deallocate, e.g. as in:
void grow(size_type newCap) {
T* newPtr = alloc.allocate(newCap);
for (pointer p = begin(), pn = newPtr; p != end(); ++p, ++pn) {
new(pn) T(std::move(*p));
p->~T();

}
alloc.deallocate(ptr, cap);
ptr = newPtr;
cap = newCap;

}
};

[Slide 388] Helper Functions for Handling Uninitialized Memory

• Provides more guarantees in case of an exception
• std::uninitialized_move – move range of elements into uninitialized memory
• std::uninitialized_default_construct – default-construct range of elements

into uninitialized memory
• std::destroy – destruct range of elements

[Slide 389] Exception Safety when Moving

• Move constructor/assignment might throw exceptions

Quiz: (Why) is this problematic?

A. Afterwards, vector might be in unrepairable state

B. Exception cannot be caught properly

C. New allocation will always be leaked
6https://en.cppreference.com/w/cpp/memory/allocator

147

https://en.cppreference.com/w/cpp/memory/allocator

10 Exceptions and Advanced Memory Management

D. This is not a problem, just annoying

• std::vector guarantees exception safety
– E.g., push_back guarantees to have no effect if any operations throws

• If move operations are not noexcept, elements will be copied instead

[Slide 390] memcpy/memmove

• For primitive data types, constructing/destructing is not required
• std::is_trivially_copyable_v<T> – indicates whether byte-wise copying is pos-

sible
– In fact, this is also possible for structs of trivially copyable types

• std::memcpy(dest, src, count) – copy bytes between non-overlapping regions
• std::memmove(dest, src, count) – copy bytes between regions
• In both cases, alignment of destination must be suitable

10.5 Custom Allocator Functions

[Slide 391] Custom Allocators

• Sometimes, the default allocator is not good enough
– Many small allocations are expensive
– All allocations have to be freed separately
– Every allocation has memory overhead (e.g., tracking allocation size)
– Requires synchronization in multi-threaded applications
– Possibly bad locality

• Typical solution: bump pointer allocator
– Allocate large chunk of memory once
– Hand out slices for individual allocations
– Free allocated memory when allocator is destroyed

[Slide 392] Custom Allocators in C++

• Requirements specified by Allocator
– In essence: value_type, allocate, deallocate

• Containers are allocator-aware and can use custom allocators
• Bump-ptr allocator in C++ standard library: std::pmr::monotonic_buffer_resource

– Usable with std::pmr::polymorphic_allocator as allocator
– Performance characteristics not that good (see inheritance later)

• For performance with many small allocations, custom allocators are often required

[Slide 393] Exceptions and Advanced Memory Management – Summary

• C++ Exceptions allow for unordinary control flow transfers

148

10.5 Custom Allocator Functions

• Almost everything can be thrown and caught
• Exception unwinding calls destructors of objects with automatic storage duration
• Objects can be constructed in allocated memory with placement new
• Required when memory allocation and object construction are separated
• unions provide an untagged overlapping storage
• Writing exception-safe code is difficult
• Custom allocators can substantially improve performance in some applications

[Slide 394] Exceptions and Advanced Memory Management – Questions

• Why do some people see C++ exceptions as problematic?
• What are upsides and downsides of C++ exceptions?
• Why is writing exception-safe code difficult?
• What happens when an exception is thrown in a noexcept function?
• Why should move constructors/assignment be marked as noexcept?
• What requirements must be met for placement new?
• Why is using union much more difficult than in C?
• What are benefits of bump pointer allocators?

149

11 Compile-Time Programming

11.1 Attributes

[Slide 396] Attributes1

• Almost everything can be annotated with attributes
• C++-style attributes: [[<attribute>]]

– Parenthesis inside attributes must be balanced, unknown attributes ignored
• Preprocessor __has_cpp_attribute(name) to query support

#include <cassert>
int foo();
int foo(int z) {

// Variable attribute: suppresses warning about unused variable
int x = 5, y [[maybe_unused]] = foo();
assert(y); // <-- in release builds, y is unused
if (z > 10) [[likely]] // Give hint that condition is likely

x += z * z;
return x;

}

[Slide 397] Function Attributes

• [[nodiscard]] – cause warning when function result is unused
– Beneficial to enforce error handling etc.

• [[deprecated(reason)]] – cause warning when function is used
• [[noreturn]] – indicate that function does not return

#include <cassert>
[[nodiscard, deprecated("use␣xyz␣instead")]] int oldFunc();
// Second attribute is unknown and ignored, causes warning
[[noreturn, unknown_and_ignored]] void myExit();
int foo(int z) {

oldFunc();
myExit();
// no warning about missing return in non-void function

}

[Slide 398] Implementation-Defined Attributes

• Most attributes are implementation-defined
– E.g., Clang2 and GCC support hundreds of attributes

1https://en.cppreference.com/w/cpp/language/attributes
2https://clang.llvm.org/docs/AttributeReference.html

151

https://en.cppreference.com/w/cpp/language/attributes
https://clang.llvm.org/docs/AttributeReference.html

11 Compile-Time Programming

Some examples:
• [[gnu::always_inline]] – Always inline function when possible
• [[clang::optnone]] – Disable optimization for specific function

– E.g., to ease debugging of a single function
• [[clang::musttail]] – Return statement must make tail call

– Tail call = no stack frame growth for function call, useful for tail-recursive
functions

Typically, attributes are wrapped as macros if supported by the compiler. This
enables to use non-standard attributes, which have different spellings in different
compilers. Example:
#if __has_cpp_attribute(clang::foo)
#define FOO [[clang::foo]]
#elif __has_cpp_attribute(msvc::foo)
#define FOO [[msvc::foo]]
#else
#define FOO
#endif

[Slide 399] [[clang::lifetimebound]]

• Indicate that return value may refer to parameter object
• Causes warning when parameter’s lifetime is shorter than returned value

#include <print>
#include <format>
#include <string>
#include <string_view>
struct Error {

std::string_view msg;
Error(const std::string &msg [[clang::lifetimebound]]) : msg(msg) {}

};
int main() {

// Construct error with temporary string...
Error err(std::format("foo!␣{}", 123));
// Warning: dangling reference
std::println("error:␣{}", err.msg);

}

[Slide 400] [[clang::lifetimebound]] – Example

Quiz: Which parameter/function should get the attribute?
struct Foo {

std::string msg;
explicit Foo(const std::string& msg) : msg(msg) {}
void addMsg(const std::string& add) { msg += add;}
const std::string& getMsg() const { return msg; }

};

A. msg

152

11.2 Compile-Time Programming

B. msg and add

C. getMsg (before block, due to this)

D. getMsg, msg, and add

[Slide 401] GNU-Style and MSVC-Style Attributes

• GNU-style: __attribute__((attrs))
• MSVC-style: __declspec(attrs)
• Much older (⇝ more widely used) than C++ attributes
• Syntax of attributes sometimes slightly different (see manual)
• Prefer C++-style attributes when possible

However, do note that while many GNU attributes can be used in C++-style at-
tributes with the gnu:: prefix, a few attributes are only supported with the GNU
attribute syntax.

11.2 Compile-Time Programming

[Slide 402] Constant Expressions

• Certain language constructs require compile-time constants
– E.g., array bounds, non-type template parameters, bit-field length, static_assert,

enum values, . . .
• So far limited to constant literals or simple expressions

static int return4() { return 4; }
int main() {

const int x1 = 4;
std::array<int, x1 + 3> arr1; // ok... (due to exception in standard)
const int x2 = return4();
std::array<int, x2> arr2; // Error! x2 is not a constant expression

}

• const just marks a variable as non-modifiable

[Slide 403] constexpr3

• constexpr variables – can be used as constant expressions
– Must be initialized immediately with a constant expression
– Implicitly const; some type restrictions (see reference)

• constexpr functions – function that is evaluatable at compile-time
– Result can be used as constant expression
– Destructor must be constexpr (or trivial)

3https://en.cppreference.com/w/cpp/language/constexpr

153

https://en.cppreference.com/w/cpp/language/constexpr

11 Compile-Time Programming

[Slide 404] constexpr – Example

int f(int x) { return x * x; }
constexpr int g(int x) { return x * x; }

int main() {
const int x = 7; // constant expression
const int y = f(x); // not a constant expression
const int z = g(x); // constant expression

constexpr int xx = g(x); // ok
constexpr int yy = y; // ERROR: f(x) not constant expression
constexpr int zz = z; // ok

}

[Slide 405] constexpr – Example

Quiz: Which statement is correct?
constexpr int* f(int n) { return n ? new int(n) : nullptr; }
int* f1(int n) { return f(n); }
int* f2(int n) { constexpr auto r = f(0); return r; }
int* f3(int n) { constexpr auto r = f(n); return r; }
constexpr int* f4(int n) { return f(n); }

A. f: heap allocation is performed at compile-time

B. f2: f(0) is not a constant expression

C. f3: f(n) is not a constant expression

D. f4: must return constant expression

[Slide 406] constexpr vs. consteval Functions

• constexpr functions can be evaluated at compile-time
– Implicitly inline
– When constant expression is required, must yield compile-time constant
– Other code paths can work with non-compile-time constants
– Can be called at runtime with dynamic values

• consteval functions must be evaluated at compile-time
– Implicitly inline
– Every function call must yield compile-time constant
– Cannot be mixed with constexpr

[Slide 407] consteval – Example

int sqr(int n) { return n * n; }
consteval int sqrConsteval(int n) { return n * n; }
constexpr int sqrConstexpr(int n) { return n * n; }

154

11.2 Compile-Time Programming

int main() {
constexpr int p1 = sqr(100); // ERROR: not constexpr
constexpr int p2 = sqrConsteval(100);
constexpr int p3 = sqrConstexpr(100);
int x = 100;
int p4 = sqr(x);
int p5 = sqrConsteval(x); // ERROR: x not constant expression
int p6 = sqrConstexpr(x);
int p7 = sqrConsteval(100); // compile-time
int p8 = sqrConstexpr(100); // run-time or compile-time

}

[Slide 408] constexpr/consteval and Compile-Time Execution

Quiz: Which statement is correct?

A. Non-constexpr/consteval functions are always evaluated at runtime.

B. When possible, constexpr functions are evaluated at compile-time.

C. consteval functions can only include compile-time evaluable code.

D. constexpr functions can be defined in headers without ODR violations.

[Slide 409] Compile-Time Evaluation – Restrictions

• No undefined behavior (compile-time error)
• Calling functions that are only declared
• Accessing volatile variables
• Dynamic memory allocations that are not delete-ed in same expression
• Placement new (lifted in C++26)
• No reinterpret_cast
• Implementation-defined restrictions
• See reference for the full list4

[Slide 410] consteval – Example

Quiz: What is problematic about this code?
#include <vector>
consteval int fib(int n) {

std::vector<int> i{0, 1};
while (i.size() <= n)

i.push_back(i[i.size() - 2] + i.back());
return i[n];

}
static_assert(fib(6) == 8);

A. Cannot use std::vector in consteval function
4https://en.cppreference.com/w/cpp/language/constant_expression

155

https://en.cppreference.com/w/cpp/language/constant_expression

11 Compile-Time Programming

B. Cannot use dynamic memory allocation in consteval function

C. fib(6) = 13 ̸= 8

D. Nothing, the code compiles without errors

A typical use-case of consteval is to pre-compute lookup tables, static (perfect) hash
tables, etc. during compilation for efficient execution at runtime. As an example:
template <unsigned N>
consteval std::array<unsigned, N> computeFib() {

std::array<unsigned, N> res{0, 1};
for (unsigned i = 2; i < N; ++i)

res[i] = res[i - 1] + res[i - 2];
return res;

}

int fib(unsigned n) {
static constexpr auto cache = computeFib<1000>();
return cache[n];

}

[Slide 411] if constexpr5

• if constexpr (...) – compile-time if
• Not-taken code paths are discarded

– For templates where condition depends on template parameters: not instanti-
ated

• Benefit over #if: syntax and large parts of semantics are checked
// Example from cppreference
template <typename T> auto getValue(T t) {

if constexpr (std::is_pointer_v<T>)
return *t; // deduces return type to int for T = int*

else
return t; // deduces return type to int for T = int

}

Due to the semantic checks of disabled code paths, if constexpr should be preferred
over macros. The disabled path of macro-based condition never reaches the compiler
and, as developers tend to not thoroughly test all configurations, is more likely to be
non-functional.

Usage examples can include conditionally enable debug checks and type-dependent
code paths.code paths.

[Slide 412] if consteval

• if consteval { ... } – execute block if in constant-evaluated context
5https://en.cppreference.com/w/cpp/language/if#Constexpr_if

156

https://en.cppreference.com/w/cpp/language/if#Constexpr_if

11.3 decltype

• if ! consteval { ... } – if in not constant-evaluated context
• std::is_constant_evaluated() – “legacy” C++20 mechanism

constexpr int compute(int x) {
if consteval {

// use slower, constant-evaluable algorithm
} else {

// use faster algorithm that cannot be executed during compilation
}

}

For example, a square-and-multiply algorithm might be used to implement an integer
pow operation at compile-time, while std::pow can be used at runtime, as it might
be more efficient.

[Slide 413] constinit6

• Variables with static/thread-local storage duration are either
– ... constant-initialized, i.e., take compile-time constants
– ... dynamically initialized, i.e., constructor called at program start-up

• constexpr enforces the former and prevents modifications
• constinit enforces the former, but allows modifications

constexpr int square(int n) { return n * n; }
constinit int sq5 = square(5); // mutable variable

const constinit is not quite the same as constexpr, as constant destruction is not
required.

11.3 decltype

[Slide 414] decltype7

• Possibly unknown types can often be deduced with auto
• Sometimes, knowing the exact type of an expression is useful

– E.g., for explicitly specifying template parameters
• decltype(identifier/class member access) – yield type of entity
• decltype(expression) – yield type of expression

– lvalue: T&, xvalue: T&&, prvalue: T
– Expression is not evaluated

• Note: decltype(x) and decltype((x)) are different!
– The first yields the type of x, the latter a reference as (x) is an lvalue

6https://en.cppreference.com/w/cpp/language/constinit
7https://en.cppreference.com/w/cpp/language/decltype

157

https://en.cppreference.com/w/cpp/language/constinit
https://en.cppreference.com/w/cpp/language/decltype

11 Compile-Time Programming

[Slide 415] decltype – Examples

#include <concepts>

int main() {
int x;
const short c = 12;
static_assert(std::same_as<decltype(x), int>);
static_assert(!std::same_as<decltype((x)), int>);
static_assert(std::same_as<decltype((x)), int&>);

static_assert(std::same_as<decltype(c), const short>);
static_assert(std::same_as<decltype((c)), const short&>);
static_assert(std::same_as<decltype(c + c), int>); // integer promotion

}

[Slide 416] Interlude: Integer Promotion

• Small integer types get promoted to int before arithmetic is performed8

Integer promotion is a relict imported from C, which originally introduced it to
simplify the implementation of small data types (e.g., char) on platforms that could
only perform operations on word-sized integers (i.e., int).

Quiz: Which statement is correct?
Assume std::same_as<int, int32_t>.
#include <cstdint>
constexpr mul16(uint16_t a, uint16_t b) -> auto { return a * b; }
static_assert(std::same_as<decltype(mul16(1, 1)), int>);
static_assert(mul16(0xffff, 0xffff) == 1);

A. The return type of mul16 is uint16_t, deduced from return statement.

B. The return type of mul16 is unsigned, as uint16_t is unsigned.

C. The second assertion fails, as it is not a constant expression.

D. The program compiles successfully.

11.4 Template Meta-Programming

[Slide 417] Template Meta-Programming

• Templates are instantiated during compilation
• if constexpr makes code actually readable

8Simplified, but captures the important parts.

158

11.5 Concepts II

template <unsigned N>
constexpr int templ_fib() {

if constexpr (N <= 1)
return N;

else
return templ_fib<N-2>() + templ_fib<N-1>();

}
static_assert(templ_fib<6>() == 8);

[Slide 418] Template Meta-Programming, the Old Way

• Template specializations used as recursion base case
template <unsigned N>
constexpr int templ_fib() {

return templ_fib<N-2>() + templ_fib<N-1>();
}

template<>
constexpr int templ_fib<0>() { return 0; }

template<>
constexpr int templ_fib<1>() { return 1; }

static_assert(templ_fib<6>() == 8);

Avoid this type of meta-programming where possible.
Note that template specialization makes the type system Turing-complete. Hence,

plain syntactical parsing of C++ source code is an undecidable problem. In practice,
however, this has no relevance and recursion limits are often rather small.

11.5 Concepts II

[Slide 419] Concepts

• Previously seen: type constraints with requires clause
– template <...> requires bool-constant-expr

• Repeating requirements can be tedious
⇝ Concept = named set of requirements

template <class T>
concept IntOrFloat = std::integral<T> || std::floating_point<T>;
static_assert(IntOrFloat<int>);
static_assert(!IntOrFloat<int*>);

template <IntOrFloat T> T add(T a, T b) {
return a + b;

}

[Slide 420] Concepts: Requirements

• For templates, the exact type is often hard to verify

159

11 Compile-Time Programming

• So far: “duck typing” – just assume that method/operator is available
• Concepts allow to verify that all required operations are present

// Parameters a,b have no storage, just used as notation for naming requirements
// NB: this is a requires expression, not a requires clause for constraints
template<typename T> concept Addable = requires (T a, T b) {

// Verify that a + b is a valid expression.
a + b;

};
template<typename T>
concept Graph = requires {

// Verify that T has a member type "node_type".
typename T::node_type;
// ... and require that is is an integer type.
requires std::integral<typename T::node_type>;

};

[Slide 421] Concepts: Requirements

Quiz: Which statement is correct?
template<typename T>
concept Graph = requires {

typename T::node_type;
requires std::integral<typename T::node_type>;

};
class MyGraph {

using node_type = char;
};
static_assert(Graph<MyGraph>);

A. Syntax error: cannot use concept as boolean constant expression.

B. Assertion fails: char is not an integer.

C. Assertion fails: node_type is private.

D. The program compiles successfully.

[Slide 422] Concepts: Compound Requirements

• We can also check the return type of an expression.
// Parameters a,b have no storage, just used as notation for naming requirements
template<typename T>
concept Addable = requires (T a, T b) {

// Verify that a + b is a valid expression
// ... and can be implicitly converted to T.
{ a + b } -> std::convertible_to<T>;

// Alternatively:
// ... and has the type T.
{ a + b } -> std::same_as<T>;

};

160

11.5 Concepts II

As a requires expression (not the requires clause!) is just a boolean expression,
it is possible to write the following — although in the interest of readability, is not
advisable to do so:
template <class T> requires requires(T a, T b) {

{ a + b } -> std::convertible_to<T>;
{ a * b } -> std::convertible_to<T>;

}
T fma(T a, T b, T c) {

return a * b + c;
}

[Slide 423] Missing Requirements

• Missing requirements cause candidate to not be selected
• But: this is not an error ⇝ multiple variants can be provided

template <class NodeT>
concept NodeHasNumber = requires(const NodeT& n) {

{ n.getNumber() } -> std::convertible_to<unsigned>;
};
template <class NodeT>
struct NumberedGraph {

std::unordered_map<const NodeT*, unsigned> nums;
unsigned getNumber(const NodeT& node) requires NodeHasNumber<NodeT> {

return node.getNumber();
}
unsigned getNumber(const NodeT& node) requires (!NodeHasNumber<NodeT>) {

auto [it, inserted] = nums.try_emplace(&node, nums.size());
return it->second;

}
};

This example shows a class which provides different implementations of getNumber
depending on the node type. If the node supports getNumber, that number is re-
turned, otherwise an ad-hoc numbering in a local hash map is created.

Note that the same effect could be using if constexpr, which would be preferable
— this example is primarily for demonstration purposes.

[Slide 424] Substitution Failure Is Not An Error (SFINAE)9

• If substitution of template parameters fails, the candidate is simply discarded with-
out an error10

• Allows to implement requires in pre-C++2011

template <class T>
std::enable_if_t<std::is_integral_v<T>, T> add(T a, T b) {

return a + b;
}

9https://en.cppreference.com/w/cpp/language/sfinae
10See reference for details
11https://en.cppreference.com/w/cpp/types/enable_if

161

https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/types/enable_if

11 Compile-Time Programming

template <class T>
std::enable_if_t<std::is_floating_point_v<T>, T> add(T a, T b) {

return a + b;
}

• Prefer concepts if possible (i.e., code base uses C++20 or newer)

[Slide 425] Compile-Time Programming – Summary

• Attributes allow for annotation of almost all language constructs
• Most attributes are implementation-specific
• constexpr permits use of functions as compile-time constant expressions
• constexpr variables must be initialized with compile-time constant
• consteval functions must always be evaluated at compile-time
• constinit variables must have a constant initializer, but can be mutable
• Concepts can test whether certain expressions are valid
• Failing requirements or substitution failure allows for providing type-dependent

implementations (or the absence thereof)

[Slide 426] Compile-Time Programming – Questions

• What happens with unsupported attributes?
• What are use cases for implementation-specific attributes?
• When are constexpr function calls evaluated?
• Are non-constexpr functions always executed at runtime?
• What is the difference between constexpr and constinit?
• What is different between decltype(x) and decltype((x))?
• Which recent C++ constructs largely eliminate the need for template metaprogram-

ming?

162

	Overview and Hello World
	Organization
	Introduction
	Hello World!
	CMake

	Basic Syntax and Object Model
	Types
	Operators
	Observable Behavior
	Basic Syntax
	Namespaces
	Memory & Object Model

	Declarations/Definitions, Preprocessor, Linker
	Preprocessor
	Assertions
	Declaration & Definitions
	Linker
	One Definition Rule
	Header and Implementation Files
	Linkage

	References, Arrays, Pointers
	References
	Arrays
	Pointers

	Classes and Conversions
	Classes
	Constructors
	Member Access Control
	Forward Declarations
	Operator Overloading
	Enums
	Type Aliases

	Memory Management and Copy/Move
	Heap Allocations
	Destructor
	Copy Semantics
	Move Semantics
	Idioms
	Ownership
	Usage Guidelines

	Templates
	Basics
	auto Type
	Variadic Templates
	Dependent Names
	Explicit Specialization
	Type Traits
	Constraints

	Containers and Iterators
	Utilities
	Iterators
	Vector and Span
	Map and Set
	String

	Algorithms, Functions, and Lambdas
	Function Objects
	Algorithms
	Ranges
	Random Number Generators

	Exceptions and Advanced Memory Management
	Exceptions
	Explicit Object Construction
	Unions
	Implementing a Vector
	Custom Allocator Functions

	Compile-Time Programming
	Attributes
	Compile-Time Programming
	decltype
	Template Meta-Programming
	Concepts II

