
1 Introduction and Interpretation

1.1 Organization

[Slide 2] Module “Code Generation for Data Processing”

Learning Goals
• Getting from an intermediate code representation to machine code
• Designing and implementing IRs and machine code generators
• Apply for: JIT compilation, query compilation, ISA emulation

Prerequisites
• Computer Architecture, Assembly ERA, GRA/ASP
• Databases, Relational Algebra GDB
• Beneficial: Compiler Construction, Modern DBs

[Slide 3] Topic Overview

Introduction
• Introduction and Interpretation
• Compiler Front-end

Intermediate Representations
• IR Concepts and Design
• LLVM-IR
• Analyses and Optimizations

Compiler Back-end
• Instruction Selection
• Register Allocation
• Linker, Loader, Debuginfo

Applications
• JIT-compilation + Sandboxing
• Query Compilation
• Binary Translation

[Slide 4] Lecture Organization

• Lecturer: Dr. Alexis Engelke engelke@in.tum.de
• Time slot: Thu 10-14, 02.11.018
• Material: https://db.in.tum.de/teaching/ws2425/codegen/

1

https://db.in.tum.de/teaching/ws2425/codegen/


1 Introduction and Interpretation

Exam

• Written exam, 90 minutes, no retake, date TBD
• (Might change to oral on very low registration count)

[Slide 5] Exercises

• Regular homework, often with programming exercise
• Submission via POST request (see assignments)

– Grading with {∗,+,∼,−}, feedback on best effort
• Exercise session modes:

– Present and discuss homework solutions
– Hands-on programming or analysis of systems (needs laptop)

Grade Bonus

• Requirement: N − 2 “sufficiently working” homework submissions and one presen-
tations of homework in class (depends on submission count)

• Bonus: grades in [1.3; 4.0] improved by 0.3/0.4

[Slide 6] Why study compilers?

• Critical component of every system, functionality and performance
– Compiler mostly alone responsible for using hardware well

• Brings together many aspects of CS:
– Theory, algorithms, systems, architecture, software engineering, (ML)

• New developments/requirements pose new challenges
– New architectures, environments, language concepts, . . .

• High complexity!

[Slide 7] Compiler Lectures @ TUM

Compiler Construction
IN2227, SS, THEO

Front-end, parsing, seman-
tic analyses, types

Program Optimization
IN2053, WS, THEO

Analyses, transformations,
abstract interpretation

Virtual Machines
IN2040, SS, THEO

Mapping programming
paradigms to IR/bytecode

Programming Languages
CIT3230000, WS

Implementation of ad-
vanced language features

Code Generation
CIT3230001, WS

Back-end, machine code
generation, JIT comp.
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1.2 Overview

[Slide 8] Why study code generation?

• Frameworks (LLVM, . . . ) exist and are comparably good, but often not good enough
(performance, features)

– Many systems with code gen. have their own back-end
– E.g.: V8, WebKit FTL, .NET RyuJIT, GHC, Zig, QEMU, Umbra, . . .

• Machine code is not the only target: bytecode
– Often used for code execution
– E.g.: V8, Java, .NET MSIL, BEAM (Erlang), Python, MonetDB, eBPF, . . .
– Allows for flexible design
– But: efficient execution needs machine code generation

[Slide 9] Proebsting’s Law

“Compiler advances double computing power every 18 years.”

– Todd Proebsting, 1998a

ahttp://proebsting.cs.arizona.edu/law.html

• Still optimistic; depends on number of abstractions

The performance increases compilers can make on existing code are typically low.
However, optimizing compilers gain more abilities in simplifying needlessly complex
code, enabling the use of more abstractions and therefore higher level code. These ab-
stractions are removed/optimized during compilation, enabling languages to promote
these as zero-cost abstractions. They do, however, have a cost: compile times.

Also note that some of these “zero-cost” abstractions actually do have some run-
time cost. For example, the mere possibility of C++ exceptions can cause less efficient
machine code and might prevents optimizations due to the more complex control flow
possibilities.

1.2 Overview

[Slide 10] Motivational Example: Brainfuck

• Turing-complete esoteric programming language, 8 operations
– Input/output: . ,
– Moving pointer over infinite array: < >
– Increment/decrement: + -
– Jump to matching bracket if (not) zero: [ ]

++++++[->++++++<]>.

• Execution with pen/paper? :(

3

http://proebsting.cs.arizona.edu/law.html


1 Introduction and Interpretation

[Slide 11] Program Execution

Program Hardware Result

Programs
• High flexibility (possibly)
• Many abstractions (typically)
• Several paradigms

Hardware/ISA
• Low-level interface
• Few operations, imperative
• “Not easy” to write

[Slide 12] Motivational Example: Brainfuck – Interpretation

• Write an interpreter!

unsigned char state[10000];
unsigned ptr = 0, pc = 0;
while (prog[pc])
switch (prog[pc++]) {
case ’.’: putchar(state[ptr]); break;
case ’,’: state[ptr] = getchar(); break;
case ’>’: ptr++; break;
case ’<’: ptr--; break;
case ’+’: state[ptr]++; break;
case ’-’: state[ptr]--; break;
case ’[’: state[ptr] || (pc = matchParen(pc, prog)); break;
case ’]’: state[ptr] && (pc = matchParen(pc, prog)); break;
}

[Slide 13] Program Execution

Compiler

Program Compiler Program

• Translate program to other lang.
• Might optimize/improve program

• C, C++, Rust → machine code
• Python, Java → bytecode

Interpreter

Program Interpreter Result

• Directly execute program
• Computes program result

• Shell scripts, Python bytecode, ma-
chine code (conceptually)

Multiple compilation steps can precede the “final interpretation”
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1.3 High-Level Structure of Compilers

1.3 High-Level Structure of Compilers

[Slide 14] Compilers

• Targets: machine code, bytecode, or other source language
• Typical goals: better language usability and performance

– Make lang. usable at all, faster, use less resources, etc.
• Constraints: specs, resources (comp.-time, etc.), requirements (perf., etc.)
• Examples:

– “Classic” compilers source → machine code
– JIT compilation of JavaScript, WebAssembly, Java bytecode, . . .
– Database query compilation
– ISA emulation/binary translation

[Slide 15] Compiler Structure: Monolithic

Source
Program Compiler Machine

Code

Errors

• Inflexible architecture, hard to retarget

Some languages like C are designed to be compilable in a single pass without building
any intermediate representation of the code between source and assembly. Single-pass
compilers exist, but often have very limited possibilities to transform the code. They
might not even know basic code properties, e.g., the size of the stack frame, during
compilation of a function.

[Slide 16] Compiler Structure: Two-phase architecture

Source
Program Front-end Back-end Machine

Code
IR

Errors

Front-end
• Parses source code
• Detect syntax/semantical errors
• Emit intermediate representation encode semantics/knowledge
• Typically: O(n) or O(n log n)

Back-end
• Translate IR to target architecture
• Can assume valid IR (⇝ no errors)
• Possibly one back-end per arch.
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1 Introduction and Interpretation

• Contains NP-complete problems

After parsing, all information is encoded in the IR, including references to source code
constructs for debugging support. The input source code is (at least conceptually)
no longer needed.

In practice, there are very rare cases where the back-end can also raise errors. This
can happen, for example, when some very architecture-specific constraints might be
hard to verify during parsing (e.g., inline assembly constraints in combination with
available registers).

[Slide 17] Compiler Structure: Three-phase architecture

Source
Program Front-end Optimizer Back-end Machine

Code
IR IR

Errors

• Optimizer: analyze/transform/rewrite program inside IR

• Conceptual architecture: real compilers typically much more complex
– Several IRs in front-end and back-end, optimizations on different IRs
– Multiple front-ends for different languages
– Multiple back-ends for different architectures

Example Clang/LLVM (will be covered in more detail later): Clang parses the in-
put into an abstract syntax tree (IR 1), uses this for semantic analyses; then Clang
transforms the code into LLVM-IR (IR 2), which is primarily used for optimization;
then the LLVM back-end transforms the code further into LLVM’s Machine IR (IR
3), executes some low-level optimizations and register allocation there; the assembly
printer of the back-end then lowers the code further to LLVM’s machine code rep-
resentation (IR 4), before finally emitting machine code. Some optimizations inside
this pipeline, e.g. vectorization, might even build further representation of the code.

Why are compilers using so many different code representations? Different trans-
formations work best at different abstraction levels. Diagnosing unused variables,
for example, requires information about the source code. Optimization of arithmetic
computations is easier in a data-flow-focused representation, where no explicit vari-
ables exist. Low-level modifications, like folding operations into complex addressing
modes of the ISA, need a code representation where ISA instructions are already
present.

[Slide 18] Compiler Front-end

1. Tokenizer: recognize words, numbers, operators, etc. Re

• Example: a+b*c → ID(a) PLUS ID(b) TIMES ID(c)
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1.4 Interpretation

2. Parser: build (abstract) syntax tree, check for syntax errors CFG

• Syntax Tree: describe grammatical structure of complete program Example:
expr("a", op("+"), expr("b", op("*"), expr("c"))

• Abstract Syntax Tree: only relevant information, more concise Example:
plus("a", times("b", "c"))

3. Semantic Analysis: check types, variable existence, etc.

4. IR Generator: produce IR for next stage

• This might be the AST itself

[Slide 19] Compiler Back-end

1. Instruction Selection: map IR operations to target instructions

• Use target features: special insts., addressing modes, . . .
• Still using virtual/unlimited registers

2. Instruction Scheduling: optimize order for target arch.

• Start memory/high-latency earlier, etc.
• Requires knowledge about micro-architecture

3. Register Allocation: map values to fixed register set/stack

• Use available registers effectively, minimize stack usage

1.4 Interpretation

[Slide 20] Motivational Example: Brainfuck – Front-end

• Need to skip comments
• Bracket searching is expensive/redundant
• Idea: “parse” program!
• Tokenizer: yield next operation, skipping comments
• Parser: find matching brackets, construct AST

+[[-]>]

root

+ []

[]

-

>
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1 Introduction and Interpretation

[Slide 21] Motivational Example: Brainfuck – AST Interpretation

• AST can be interpreted recursively

struct node { char kind; unsigned cldCnt; struct node* cld; };
struct state { unsigned char* arr; size_t ptr; };
void donode(struct node* n, struct state* s) {
switch (n->kind) {
case ’+’: s->arr[s->ptr]++; break;
// ...
case ’[’: while (s->arr[s->ptr]) children(n, s); break;
case 0: children(n, s); break; // root
}

}
void children(struct node* n, struct state* s) {
for (unsigned i = 0; i < n->cldCnt; i++) donode(n->cld + i, s);

}

[Slide 22] Motivational Example: Brainfuck – Optimization

• Inefficient sequences of +/-/</> can be combined
– Trivially done when generating IR

• Fold patterns into more high-level operations

In-Class Exercise:

Look at some Brainfuck programs. Which patterns are beneficial to fold?

[Slide 23] Motivational Example: Brainfuck – Optimization

• Fold offset into operation
– right(2) add(1) = addoff(2, 1) right(2)
– Also possible with loops

• Analysis: does loop move pointer?
– Loops that keep position intact allow more optimizations
– Maybe distinguish “regular loops” from arbitrary loops?

• Get rid of all “effect-less” pointer movements
• Combine arithmetic operations, disambiguate addresses, etc.

[Slide 24] Motivational Example: Brainfuck – Bytecode

• Tree is nice, but rather inefficient ⇝ flat and compact bytecode
• Avoid pointer dereferences/indirections; keep code size small
• Maybe dispatch two instructions at once?

– switch (ops[pc] | ops[pc+1] << 8)

• Superinstructions: combine common sequences to one instruction
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1.4 Interpretation

Dispatching multiple instructions at once can be problematic due to the explosion of
cases that need to be implemented (often results in large jump tables and lots of code
with resulting cache misses and branch mispredictions). Often, it is advisable to not
always switch over multiple neighbored instructions, but instead combine common
sequences into superinstructions.

[Slide 25] Motivational Example: Brainfuck – Threaded Interpretation

• Simple switch–case dispatch has lots of branch misses
• Threaded interpretation: at end of a handler, jump to next op

struct op { char op; char data; };
struct state { unsigned char* arr; size_t ptr; };
void threadedInterp(struct op* ops, struct state* s) {

static const void* table[] = { &&CASE_ADD, &&CASE_RIGHT, };
#define DISPATCH do { goto *table[(++pc)->op]; } while (0)

struct op* pc = ops;
DISPATCH;

CASE_ADD: s->arr[s->ptr] += pc->data; DISPATCH;
CASE_RIGHT: s->arr += pc->data; DISPATCH;
}

With threaded interpretation there is not a single indirect jump instruction inside the
dispatcher, but one indirect jump instruction per operation. Each of these indirect
jumps then occupies a different branch prediction slot in the CPU. If an operation of
type X is typically followed by an operation of type Y, with threaded interpretation
the CPU has a much better chance of correctly predicting the dispatch branch to
the next operation, because the indirect jump at the end of operation X typically
jumps to operation Y. Without threaded interpretation, there would be only a single
indirect branch, which is much harder to predict.

Threaded interpretation is especially useful on older and less powerful CPUs. Re-
cent CPUs (e.g., Intel since Skylake, AMD since Zen 3, Apple Silicon) store the
history of indirect branches and use this for better prediction. On such processors,
threaded interpretation might not improve performance (or gains might be lower).

[Slide 26] Fast Interpretation

• Key technique to “avoid” compilation to machine code
• Preprocess program into efficiently executable bytecode

– Easily identifiable opcode, homogeneous structure
– Can be linear (fast to execute), but trees also work
– Match bytecode ops with needed operations ⇝ fewer instructions

• Perhaps optimize – if it’s worth the benefit
– Fold constants, combine instructions, . . .
– Consider superinstructions for common sequences
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1 Introduction and Interpretation

• For very cold code: avoid transformations at all

1.5 Context of Compilation

[Slide 27] Compiler: Surrounding – Compile-time

• Typical environment for a C/C++ compiler:

fileA.c fileA.i
Preprocessor

cpp
fileA.s

C-Compiler

cc1
fileA.o

Assembler

as
exec

Linker

ld

• Calling Convention: interface with other objects/libraries
• Build systems, dependencies, debuggers, etc.
• Compilation target machine (hardware, VM, etc.)

[Slide 28] Compiler: Surrounding – Run-time

• OS interface (I/O, . . . )
• Memory management (allocation, GC, . . . )
• Parallelization, threads, . . .
• VM for execution of virtual assembly (JVM, . . . )
• Run-time type checking
• Error handling: exception unwinding, assertions, . . .
• Reflection, RTTI

[Slide 29] Motivational Example: Brainfuck – Runtime Environment

• Needs I/O for . and ,
• Error handling: unmatched brackets
• Memory management: infinitely sized array

In-Class Exercise:

How to efficiently emulate an infinitely sized array?

[Slide 30] Compilation point: AoT vs. JIT

Ahead-of-Time (AoT)
• All code has to be compiled
• No dynamic optimizations
• Compilation-time secondary concern

Just-in-Time (JIT)
• Compilation-time is critical
• Code can be compiled on-demand

– Incremental optimization, too
• Handle cold code fast
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1.5 Context of Compilation

• Dynamic specializations possible
• Allows for eval()

Various hybrid combinations possible

[Slide 31] Introduction and Interpretation – Summary

• Compilation vs. interpretation and combinations
• Compilers are key to usable/performant languages
• Target language typically machine code or bytecode
• Three-phase architecture widely used
• Interpretation techniques: bytecode, threaded interpretation, . . .
• JIT compilation imposes different constraints

[Slide 32] Introduction and Interpretation – Questions

• What is typically compiled and what is interpreted? Why?
– PostScript, C, JavaScript, HTML, SQL

• What are typical types of output languages of compilers?
• How does a compiler IR differ from the source input?
• What is the impact of the language paradigm on optimizations?
• What are important factors for an efficient interpreter?
• What are key differences between AoT and JIT compilation?
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2 Compiler Front-end

[Slide 34] Compiler Front-end

Source
Program Lexer Parser

Semantic
Analysis

Syntax
Tree

Tokens AST

Errors

• Typical architecture: separate lexer, parser, and context analysis
– Allows for more efficient lexical analysis
– Smaller components, easier to understand, etc.

• Some languages: preprocessor and macro expansion

2.1 Lexing

[Slide 35] Lexer

• Convert stream of chars to stream of words (tokens)
• Detect/classify identifiers, numbers, operators, . . .
• Strip whitespace, comments, etc.

a+b*c → ID(a) PLUS ID(b) TIMES ID(c)

• Typically representable as regular expressions

[Slide 36] Typical Token Kinds

• Punctuators ( ) [ ] { } ; = + += | ||
• Identifiers abc123 main
• Keywords void int __asm__
• Numeric constants 123 0xab1 5.7e3 0x1.8p1 09.1f
• Char constants ’a’ u’œ’
• String literals "abc\x12\n"
• Internal EOF COMMENT UNKNOWN INDENT DEDENT

– Comments might be useful for annotations, e.g. // fallthrough
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2 Compiler Front-end

Indentation-based languages like Python need separate tokens for indent/dedent, the
indentation level is tracked in the lexer. Parsing numbers may need special care to
correctly handle all possible cases of integer and floating-point numbers.

[Slide 37] Lexer Implementation

struct Token { enum Kind { IDENT, EOF, PLUS, PLUSEQ, /*...*/ };
std::string_view v; Kind kind; };

Token next(std::string_view v) {
if (v.empty()) return Token{v, Token::EOF};
if (v.starts_with("+=")) return Token{"+="sv, Token::PLUSEQ};
if (v.starts_with("+")) return Token{"+"sv, Token::PLUS};
switch (v[0]) {
case ’␣’, ’\n’, ’\t’: return next(v.substr(1)); // skip whitespace
case ’a’ ... ’z’, ’A’ ... ’Z’, ’_’: {
Token t = // ... parse identifer, e.g. using regex
if (auto kind = isKeyword(t.v)) return Token{*kind, t.v};
return t;

}
case ’0’ ... ’9’: // ... parse number
default: return Token{v.substr(0, 1), Token::ERROR};
}

}

This is just a minimal and non-optimized implementation to illustrate the concept.
Performance-focused implementations do not use explicit regular expressions but
write the state machine into code.

The struct Token has room for improvement. First, a string_view is unnecessarily
large with 16 bytes, most tokens are smaller than 216 bytes. Some tracking of the
source locations is advisable for attaching diagnostics to their origin inside the code,
for example by storing a file ID and the byte offset into the file. By tracking the byte
offsets of line breaks, the line number can be reconstructed in O(log n) from the byte
offset.

Another optimization strategy is string interning, where identifiers are converted
into unique integers (or pointers) during parsing. During later phases, comparing
interned strings is much more efficient, as it is just an integer/pointer comparison.
Another benefit is that the entire input file does not need to be kept in memory
during parsing.

[Slide 38] Lexing C??=

main() <%
// yay, this is C99??/
puts("hi␣world!");
puts("what’s␣up??!");

%>

Output: what’s up|

• Trigraphs for systems with more limited encodings/char sets
• Digraphs to provide a more readable alternative...
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2.2 Parsing

Besides digraphs, trigraphs, and the preprocessor, C has another weird property:
identifier names can be split by \, which concatenates two lines. It is necessary to
construct the “real” identifier first. To simplify memory management in such cases, a
bump pointer allocator (allocate large chunks of memory from the OS, then simply
bump the end pointer for every allocation) can be useful to store such constructed
names.

[Slide 39] Lexer Implementation

• Essentially a DFA (for most languages)
– Set of regexes → NFA → DFA

• Respect whitespace/separators for operators, e.g. + and +=
• Automatic tools (e.g., flex) exist; most compilers do their own
• Keywords typically parsed as identifiers first

– Check identifier if it is a keyword; can use perfect hashing
• Other practical problems

– UTF-8 homoglyphs; trigraphs; pre-processing directives

A tool to generate perfect hash tables from a set of keywords is gperf. Example,
compile with gperf -L C++ -C -E -t <input>:
struct keyword {char* name; int val; }
%%
int, 1
char, 2
void, 3
if, 4
else, 5
while, 6
return, 7

2.2 Parsing

[Slide 40] Parsing

• Convert stream of tokens into (abstract) syntax tree
• Most programming languages are context-sensitive

– Variable declarations, argument count, type match, etc. ⇝ separated into
semantic analysis

Syntactically valid: void foo = doesntExist / "abc";
• Grammar usually specified as CFG

[Slide 41] Context-Free Grammar (CFG)

• Terminals: basic symbols/tokens
• Non-terminals: syntactic variables
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2 Compiler Front-end

• Start symbol: non-terminal defining language
• Productions: non-terminal → series of (non-)terminals

stmt → whileStmt | breakStmt | exprStmt
whileStmt → while ( expr ) stmt
breakStmt → break ;
exprStmt → expr ;

expr → expr + expr | expr * expr | expr = expr | ( expr ) | number

[Slide 42] Hand-written Parsing – First Try

• One function per non-terminal
• Check expected structure
• Return AST node
• Need look-ahead!

NodePtr parseBreakStmt() {
consume(Token::BREAK);
consume(Token::SEMICOLON);
return newNode(Node::BreakStmt);

}
NodePtr parseWhileStmt() {
consume(Token::WHILE);
consume(Token::LPAREN);
NodePtr expr = parseExpr();
consume(Token::RPAREN);
NodePtr body = parseStmt();
return newNode(Node::WhileStmt,
{expr, body});

}
NodePtr parseStmt() {
// whoops!

}

[Slide 43] Hand-written Parsing – Second Try

• Need look-ahead to distinguish production rules
• Consequences for grammar:

– No left-recursion
– First n terminals must allow distinguishing rules
– LL(n) grammar; n typically 1

⇒ Not all CFGs (easily) parseable (but most programming langs. are)
• Now... expressions

NodePtr parseBreakStmt() { /*...*/ }
NodePtr parseWhileStmt() { /*...*/ }

NodePtr parseStmt() {
Token t = peekToken();
if (t.kind == Token::BREAK)
return parseBreakStmt();
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2.2 Parsing

if (t.kind == Token::WHILE)
return parseWhileStmt();

// ...
NodePtr expr = parseExpr();
consume(Token::SEMICOLON);
return newNode(Node::ExprStmt,
{expr});

}

[Slide 44] Ambiguity

expr → expr + expr | expr * expr | expr = expr | ( expr ) | number

Input: 4 + 3 ∗ 2

E

E

4 + 3

* 2

E

4 + E

3 * 2

The grammar, as specified, is ambiguous, there are two possible ways to parse the
input.

[Slide 45] Ambiguity – Rewrite Grammar?

primary → ( expr ) | number
expr → primary + expr | primary * expr | primary = expr | primary

Input: 4 + 3 ∗ 2

E

4 + E

3 * 2

Input: 4 ∗ 3 + 2

E

4 * E

3 + 2

The grammar is no longer ambiguous, but the result might not be expected, conven-
tionally, multiplication has a stronger binding than addition.

[Slide 46] Ambiguity – Precedence

Input: 4 ⋆ 5 ⃝ 6
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2 Compiler Front-end

⋆

4 ⃝

5 6

If prec(⃝) > prec(⋆) or equal prec.
and ⋆ is right-assoc.

Examples:
• 4 + 5 · 6 (prec(·) > prec(+))
• a = b = c (= is right-assoc.)
b = c should be executed first

⃝

⋆

4 5

6

If prec(⃝) < prec(⋆) or equal prec.
and ⋆ is left-assoc.

Examples:
• 4+5 < 6 (prec(<) < prec(+))
• a+ b− c (+ is left-assoc.)
a+ b should be executed first

[Slide 47] Hand-written Parsing – Expression Parsing

• Start with basic expr.:
• Number, variable, etc.
• Parenthesized expr.

– Parse full expression
– Next token must be )

• Unary expr: followed by expr. with higher prec.
– - < unary - < []/->

NodePtr parseExpr(unsigned minPrec=0);
NodePtr parsePrimaryExpr() {
switch (Token t = next(); t.kind) {
case Token::IDENT:
return makeNode(Node::IDENT, t.v);

case Token::NUMBER: // ...
case Token::MINUS:
// Only exprs with high precedence
return makeNode(Node::UMINUS,
{parseExpr(UNARY_PREC)});

case Token::LPAREN: // ...
// ...
}

}

[Slide 48] Hand-written Parsing – Expression Parsing

• Only allow ops. with higher prec. on the right child
– Right-assoc.: allow same

• Lower prec.: return + insert higher up in the tree
OpDesc OPS[] = { // {prec, rassoc}
[Token::MUL] = {12, false},
[Token::ADD] = {11, false},
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2.2 Parsing

[Token::EQ] = {2, true},
[Token::QUEST] = {3, true}, // ?:

}
NodePtr parseExpr(unsigned minPrec=1) {
auto lhs = parsePrimaryExpr();
while (auto op = OPS[next().kind];

op.prec >= minPrec) {
// ... handle (, [, ?: ...
auto newPrec = op.rassoc ?
op.prec : op.prec + 1;

auto rhs = parseExpr(newPrec);
lhs = makeNode(op.nodeKind,
{lhs, rhs});

}
return lhs;

}

In-Class Exercise:

a = 3 * 2 + 1; a = b + c + d = 1; a ? 1 : b ? 2 : 3;

Example for input: a = 3 * 2 + 1;
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2 Compiler Front-end

Rec. Depth 1 Rec. Depth 2 Rec. Depth 3

minPrec 1
lhs a
op (prec/assoc) = (2/r)

minPrec 1 2
lhs a 3
op (prec/assoc) = (2/r) * (12/l)

minPrec 1 2 13
lhs a 3 2
op (prec/assoc) = (2/r) * (12/l) + (11/l)

minPrec 1 2
lhs a 3*2
op (prec/assoc) = (2/r) + (11/l)

minPrec 1 2 12
lhs a 3*2 1
op (prec/assoc) = (2/r) + (11/l) ; (0/–)

minPrec 1 2
lhs a (3*2)+1
op (prec/assoc) = (2/r) ; (0/–)

minPrec 1
lhs a=((3*2)+1)
op (prec/assoc) ; (0/–)

[Slide 49] Top-down vs. Bottom-up Parsing

Top-down Parsing
• Start with top rule
• Every step: choose expansion
• LL(1) parser

– Left-to-right, Leftmost Derivation
• “Easily” writable by hand
• Error handling rather simple
• Covers many prog. languages

Bottom-up Parsing
• Start with text
• Reduce to non-terminal
• LR(1) parser

– Left-to-right, Rightmost Derivation
– Strict super-set of LL(1)

• Often: uses parser generator
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2.2 Parsing

• Error handling more complex
• Covers nearly all prog. languages

[Slide 50] Parser Generators

• Writing parsers by hand can be large effort
• Parser generators can simplify parser writing a lot

– Yacc/Bison, PLY, ANTLR, . . .
• Automatic generation of parser/parsing tables from CFG

– Finds ambiguities in the grammar
– Lexer often written by hand

• Used heavily in practice, unless error handling is important

[Slide 51] Bison Example – part 1

%define api.pure full
%define api.value.type {ASTNode *}
%param { Lexer* lexer }
%code{
static int yylex(ASTNode ** lvalp , Lexer* lexer);
}
%token NUMBER
%token WHILE "while"
%token BREAK "break"

// precedence and associativity
%right ’=’
%left ’+’
%left ’*’

[Slide 52] Bison Example – part 2

%%
stmt : WHILE ’(’ expr ’)’ stmt { $$ = mkNode(WHILE , $1 , $2); }

| BREAK ’;’ { $$ = mkNode(BREAK , NULL , NULL); }
| expr ’;’ { $$ = $1; }
;

expr : expr ’+’ expr { $$ = mkNode(’+’, $1, $2); }
| expr ’*’ expr { $$ = mkNode(’*’, $1, $2); }
| expr ’=’ expr { $$ = mkNode(’=’, $1, $2); }
| ’(’ expr ’)’ { $$ = $1; }
| NUMBER
;

%%
static int yylex(ASTNode ** lvalp , Lexer* lexer) {

/* return next token , or YYEOF /... */ }

Compile with bison -dg input.ypp, it will emit a C++ header, the implementation
file, and also a graph showing the state machine of he parser.
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2 Compiler Front-end

[Slide 53] Parsing in Practice

• Some use parser generators, e.g. Python some use hand-written parsers, e.g. GCC,
Clang, Swift, Go

• Optimization of grammar for performance
– Rewrite rules to reduce states, etc.

• Useful error-handling: complex!
– Try skipping to next separator, e.g. ; or ,

• Programming languages are not always context-free
– C: foo* bar;
– May need to break separation between lexer and parser

In fact, many compilersa use hand-written parsers, because they allow for better error
messages a more graceful handling of syntax errors, leading to more reported errors
during a single (failing) ompilation.
ahttps://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.
html

[Slide 54] Parsing C++

• C++ is not context-free (inherited from C): T * a;
• C++ is ambiguous: Type (a), b;

– Can be a declaration or a comma expression
• C++ templates are Turing-complete1

• C++ parsing is hence undecidable2

– Template instantiation combined with C T * a ambiguity

2.3 Semantic Analysis

[Slide 55] Semantic Analysis

• Syntactical correctness ̸⇒ correct program void foo = doesntExist / ++"abc";

• Needs context-sensitive analysis:
– Variable existence, storage, accessibility, . . .
– Function existence, arguments, . . .
– Operator type compatibility
– Attribute allowance

• Additional type complexity: inference, polymorphism, . . .
1TL Veldhuizen. C++ templates are Turing complete. 2003. url: http://port70.net/~nsz/c/c%2B%
2B/turing.pdf.

2J Haberman. Parsing C++ is literally undecidable. 2013. url: https://blog.reverberate.org/
2013/08/parsing-c-is-literally-undecidable.html.
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2.4 Miscellaneous

[Slide 56] Semantic Analysis: Scope Checking with AST Walking

• Idea: walk through AST (in DFS-order) and validate on the way
• Keep track of scope with declared variables

– Might need to keep track of defined types separately

In-Class Exercise:

How to implement the scope data structure?

• For identifiers: check existence and get type
• For expressions: check types and derive result type
• For assignment: check lvalue-ness of left side
• Might be possible during AST creation
• Needs care with built-ins and other special constructs

There are two ways of implementing a scoped hash table:
• Chain of hash maps: Scope = (Map[Name → Type] names, Scope parent).

This is, however, very slow for deeply nested scopes, as all hash maps of the
parent scopes must be queried. Hash map lookups are fairly expensive.

• Hash map of lists: Map[Name → List[Tuple[Depth, Type]]]. For every iden-
tifier, the type at a given scope nesting depth is stored. Invalidation can be
implemented with an epoch counter for every depth. The downside is that this
hash map can grow very large, as entries are never removed.

[Slide 57] Semantic Analysis and Post-Parsing Transformations

• Check for error-prone code patterns
– Completeness of switch, out-of-range constants, unused variables, ...

• Check method calls, parameter types
• Duplicate code for templates
• Make implicit value conversions explicit
• Handle attributes: visibility, warnings, etc.
• Mangle names, split functions (OpenMP), ABI-specific setup, ...
• Last step: generate IR code

2.4 Miscellaneous

[Slide 58] Parsing Performance

Is parsing/front-end performance important?

• Not necessarily: normal compilers
– Some languages (e.g., Rust) need unbounded time for parsing

23



2 Compiler Front-end

• Somewhat: JIT compilers
– Start-up time is generally noticable

• Somewhat more: Developer tools
– Imagine: waiting for seconds just for updated syntax highlighting
– Often uses tricks like incremental updates to parse tree

[Slide 59] Data Types

• Important part of programming languages
• Might have large variety and compatibility

– Numbers, Strings, Arrays, Compound Types (struct/union), Enum, Templates,
Functions, Pointers, . . .

– Class hierarchy, Interfaces, Abstract Classes, . . .
– Integer/float compatibility, promotion, . . .

• Might have implicit conversions

[Slide 60] Data Types: Implementing Classes

• Simple class/struct: trivial, just bunch of fields
– Methods take (pointer to) this as implicit parameter

• Single inheritance: also trivial – extend struct at end
• Virtual methods: store vtable in object representation

– vtable = table of function pointers for virtual methods
– Each sub-class has their own vtable

• Multiple inheritance is much more involved
• Dynamic casts: needs run-time type information (RTTI)

[Slide 61] Recommended Lectures

AD IN2227 “Compiler Constructions” covers parsing/analysis in depth

AD CIT3230000 “Programming Languages” covers dispatching/mixins/...

[Slide 62] Compiler Front-end – Summary

• Lexer splits input into tokens
– Essentially Regex-Matching + Keywords; rather simple

• Parser constructs (abstract) syntax tree from tokens
– Top-down vs. bottom-up parsing
– Typical: top-down for control flow; bottom-up for expressions
– Respect precedence and associativity for operators

• Semantic analysis ensures meaningful program
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2.4 Miscellaneous

• Some data structures are complex to implement
• Some programming languages are more difficult to parse

[Slide 63] Compiler Front-end – Questions

• What are typical components of a compiler front-end?
• What output does the lexer produce?
• How does a parser disambiguate rules?
• What is the typical way to handle operator precedence?
• Why are not all programming languages describable using CFGs?
• How to implement classes with virtual functions?
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3 Intermediate Representations

[Slide 65] Intermediate Representations: Motivation

• So far: program parsed into AST
+ Great for language-related checks
+ Easy to correlate with original source code (e.g., errors)
− Hard for analyses/optimizations due to high complexity

– variable names, control flow constructs, etc.
– Data and control flow implicit

− Highly language-specific

[Slide 66] Intermediate Representations: Motivation

block

stmt_decl

int ident

x

+

num

5

num

3

stmt_decl

int ident

y

+

ident

x

num

1

stmt_expr

=

ident

x

num

12

stmt_decl

int ident

z

+

ident

x

num

1

stmt_ret

−

ident

z

ident

y

Question: how to optimize? Is x+1 redundant? ⇝ hard to tell :(

In this representation, it is very easy to see that the two +1 operations have different
operands on the left side and are therefore not trivially redundant.

[Slide 67] Intermediate Representations: Motivation

x1 ← 5 + 3
y1 ← x1 + 1
x2 ← 12
z1 ← x2 + 1
tmp1 ← z1 − y1
return tmp1

Question: how to optimize? Is x+1 redundant? ⇝ No! :)
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3 Intermediate Representations

[Slide 68] Intermediate Representations

• Definitive program representation inside compiler
– During compilation, only the (current) IR is considered

In practice, there are, of course, exceptions to the general rule; sometimes
an IR contains references to a previous/higher-level IR. An example is
LLVM’s low-level Machine IR, which only represents single functions and
therefore references to global variables use the higher-level LLVM IR.

• Goal: simplify analyses/transformations
– Technically, single-step compilation is possible for, e.g., C ... but optimizations

are hard without proper IRs
• Compilers design IRs to support frequent operations

– IR design can vary strongly between compilers
• Typically based on graphs or linear instructions (or both)

[Slide 69] Compiler Design: Effect of Languages – Imperative

• Step-by-step execution of program modification of state
• Close to hardware execution model
• Direct influence of result

• Tracking of state is complex
• Dynamic typing: more complexity
• Limits optimization possibilities

void addvec(int* a, const int* b) {
for (unsigned i = 0; i < 4; i++)
a[i] += b[i]; // vectorizable?

}
func:
mov [rdi], rsi
mov [rdi+8], rdx
mov [rdi], 0 // redundant?
ret

Tracking state, especially when memory is involved, is one of the main challenges
during optimization. In the first example, the loop is not easily vectorizable, because
a and b could point to the same underlying array (e.g., with addvec(buf + 1, buf)).

[Slide 70] Compiler Design: Effect of Languages – Declarative

• Describes execution target
• Compiler has to derive good mapping to imperative hardware

• Allows for more optimizations
• Mapping to hardware non-trivial
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– Might need more stages
– Preserve semantic info for opt!

• Programmer has less “control”

select s.name
from studenten s
where exists (select 1

from hoeren h
where h.matrno=s.matrno)

let rec fac = function
| 0 | 1 -> 1
| n -> n * fac (n - 1)

[Slide 71] Graph IRs: Abstract Syntax Tree (AST)

• Code representation close to the source
• Representation of types, constants, etc. might differ
• Storage might be problematic for large inputs

block

stmt_decl

int ident

x

+

num

5

num

3

stmt_decl

int ident

y

+

ident

x

num

1

stmt_expr

=

ident

x

num

12

stmt_decl

int ident

z

+

ident

x

num

1

stmt_ret

−

ident

z

ident

y

[Slide 72] Graph IRs: Control Flow Graph (CFG)

• Motivation: model control flow between different code sections
• Graph nodes represent basic blocks

– Basic block: sequence of branch-free code (modulo exceptions)
– Typically represented using a linear IR

stmt1
while (exp1)
stmt2

stmt3

block

stmt1 stmt_while

exp1 stmt2

stmt3

stmt1

exp1

stmt3

stmt2

[Slide 73] Build CFG from AST – Function

• Idea: Keep track of current insert block while walking through AST
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3 Intermediate Representations

function

ret. type name arguments B

fn. prologue

B

fn. epilogue

[Slide 74] Build CFG from AST – While Loop

stmt_while

condition B

c=condition
if(!c) ↙ else ↘

B

Written in pseudo-code:
IRValue generateCFG(ASTNode* node, BasicBlock*& insPos) {
switch (node->kind()) {
case ASTNode::Function:
insPos = generatePrologue(node);
generateCFG(node->child(0), insPos);
generateEpilogue(insPos);
return nullptr;

case ASTNode::Block:
for (ASTNode* child : node->children())
generateCFG(child, insPos);

return nullptr;
case ASTNode::While: {
BasicBlock* cond = newBlock();
BasicBlock* body = newBlock();
BasicBlock* end = newBlock();
branchTo(insPos, cond);
insPos = cond;
IRValue brcond = generateCFG(node->child(0), insPos);
// NB: generateCFG can modify insPos
branchToCond(insPos, brcond, body, end);
insPos = body;
generateCFG(node->child(1), insPos);
branchTo(insPos, cond);
insPos = end;
return nullptr;
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}
// ...
}

}

[Slide 75] Build CFG from AST – If Condition

stmt_if

condition T E

c=condition
if(c) ↙ else ↘

T E

[Slide 76] Build CFG from AST: Switch

Linear search
t ← exp
if t == 3: goto B3

if t == 4: goto B4

if t == 7: goto B7

if t == 9: goto B9

goto BD

+ Trivial
− Slow, lot of code

Binary search
t ← exp
if t == 7: goto B7

elif t > 7:
if t == 9: goto B9

else:
if t == 3: goto B3

if t == 4: goto B4

goto BD

+ Good: sparse values
− Even more code

Jump table
t ← exp
if 0 ≤ t< 10:
goto table[t]

goto BD

table = {
BD, BD, BD, B3,
B4, BD, ... }

+ Fastest
− Table can be large,

needs ind. jump

[Slide 77] Build CFG from AST: Break, Continue, Goto

• break/continue: trivial
– Keep track of target block, insert branch

• goto: also trivial
– Split block at target label, if needed
– But: may lead to irreducible control flow graph (see later)

[Slide 78] CFG: Formal Definition

• Flow graph: G = (N,E, s) with a digraph (N,E) and entry s ∈ N

31



3 Intermediate Representations

– Each node is a basic block, s is the entry block
– (n1, n2) ∈ E iff n2 might be executed immediately after n1

– All n ∈ N shall be reachable from s (unreachable nodes can be discarded)
– Nodes without successors are end points

[Slide 79] CFG from C – Example

In-Class Exercise:

Derive the CFG for the these functions. Assume a switch instruction exists.

int fn1() {
if (a()) {
while (b()) {
c();
if (d())
continue;

e();
}

} else {
f();

}
}

int fn2() {
a();
do switch (c()) {
case 1:
while (d()) {
e();

case 2:
f();

}
default:
g();

} while (h());
return b();

}

[Slide 80] Graph IRs: Call Graph

• Graph showing (possible) call relations between functions
• Useful for interprocedural optimizations

– Function ordering
– Stack depth estimation
– . . .

main

parseArgs

strtol

printf

write

fibonacci

[Slide 81] Graph IRs: Relational Algebra

• Higher-level representation of query plans
– Explicit data flow

• Allow for optimization and selection actual implementations
– Elimination of common sub-trees
– Joins: ordering, implementation, etc.
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SELECT s.name, h.vorlnr
FROM studenten s, hoeren h
WHERE s.matrnr = h.matrnr

σs.matrnr=h.matrnr

×

studenten hoeren

⋊⋉HJ
s.matrnr=h.matrnr

studenten hoeren

[Slide 82] Linear IRs: Stack Machines

• Operands stored on a stack
• Operations pop arguments from top and push result
• Typically accompanied with variable storage
• Generating IR from AST: trivial
• Often used for bytecode, e.g. Java, Python

+ Compact code, easy to generate and implement
− Performance, hard to analyze

push 5
push 3
add
pop x
push x
push 1
add
pop y
push 12
pop x
push x
push 1
add
pop z

[Slide 83] Linear IRs: Register Machines

• Operands stored in registers
• Operations read and write registers
• Typically: infinite number of registers
• Typically: three-address form

– dst = src1 op src2
• Generating IR from AST: trivial
• E.g., GIMPLE, eBPF, Assembly

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1
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3 Intermediate Representations

[Slide 84] Example: High GIMPLE

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n)
gimple_bind < // <-- still has lexical scopes
int D.1950;
int res;

gimple_assign <integer_cst, res, 1, NULL, NULL>
gimple_goto <<D.1947>>
gimple_label <<D.1948>>
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
gimple_label <<D.1947>>
gimple_cond <ne_expr, n, 0, <D.1948>, <D.1946>>
gimple_label <<D.1946>>
gimple_assign <var_decl, D.1950, res, NULL, NULL>
gimple_return <D.1950>

>

$ gcc -fdump-tree-gimple-raw -c foo.c

[Slide 85] Example: Low GIMPLE

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n)
{
int res;
int D.1950;

gimple_assign <integer_cst, res, 1, NULL, NULL>
gimple_goto <<D.1947>>
gimple_label <<D.1948>>
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
gimple_label <<D.1947>>
gimple_cond <ne_expr, n, 0, <D.1948>, <D.1946>>
gimple_label <<D.1946>>
gimple_assign <var_decl, D.1950, res, NULL, NULL>
gimple_goto <<D.1951>>
gimple_label <<D.1951>>
gimple_return <D.1950>

}

$ gcc -fdump-tree-lower-raw -c foo.c
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[Slide 86] Example: Low GIMPLE with CFG

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n) {
int res;
int D.1950;
<bb 2> :
gimple_assign <integer_cst, res, 1, NULL, NULL>
goto <bb 4>; [INV]
<bb 3> :
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
<bb 4> :
gimple_cond <ne_expr, n, 0, NULL, NULL>
goto <bb 3>; [INV]

else
goto <bb 5>; [INV]

<bb 5> :
gimple_assign <var_decl, D.1950, res, NULL, NULL>
<bb 6> :

gimple_label <<L3>>
gimple_return <D.1950>

}

$ gcc -fdump-tree-cfg-raw -c foo.c

[Slide 87] Linear IRs: Register Machines

• Problem: no clear def–use information
– Is x+ 1 the same?
– Hard to track actual values!

• How to optimize?

⇒ Disallow mutations of variables

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

[Slide 88] Single Static Assignment: Introduction

• Idea: disallow mutations of variables, value set in declaration
• Instead: create new variable for updated value
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3 Intermediate Representations

• SSA form: every computed value has a unique definition
– Equivalent formulation: each name describes result of one operation

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

v1 ← 5 + 3
v2 ← v1 + 1
v3 ← 12
v4 ← v3 + 1
v5 ← v4 − v2
return v5

[Slide 89] Single Static Assignment: Control Flow

• How to handle diverging values in control flow?
• Solution: Φ-nodes to merge values depending on predecessor

– Value depends on edge used to enter the block
– All Φ-nodes of a block execute concurrently (ordering irrelevant)

entry : x ← . . .
if (x > 2) goto cont

then : x ← x ∗ 2
cont : return x

entry : v1 ← . . .
if (v1 > 2) goto cont

then : v2 ← v1 ∗ 2
cont : v3 ← Φ(entry : v1, then : v2)

return v3

[Slide 90] Example: GIMPLE in SSA form

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n) { int res, D.1950, _1, _6;
<bb 2> :
gimple_assign <integer_cst, res_4, 1, NULL, NULL>
goto <bb 4>; [INV]
<bb 3> :
gimple_assign <mult_expr, _1, n_2, n_2, NULL>
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gimple_assign <mult_expr, res_8, res_3, _1, NULL>
gimple_assign <plus_expr, n_9, n_2, -1, NULL>
<bb 4> :
# gimple_phi <n_2, n_5(D)(2), n_9(3)>
# gimple_phi <res_3, res_4(2), res_8(3)>
gimple_cond <ne_expr, n_2, 0, NULL, NULL>
goto <bb 3>; [INV]

else
goto <bb 5>; [INV]

<bb 5> :
gimple_assign <ssa_name, _6, res_3, NULL, NULL>
<bb 6> :

gimple_label <<L3>>
gimple_return <_6>

}

$ gcc -fdump-tree-ssa-raw -c foo.c

[Slide 91] SSA Construction – Local Value Numbering

• Simple case: inside block – keep mapping of variable to value

Code
x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

SSA IR
v1 ← add 5, 3
v2 ← add v1, 1
v3 ← const 12
v4 ← add v3, 1
v5 ← sub v4, v2

ret v5
Variable Mapping

x → v3
y → v2
z → v4

tmp1 → v5

[Slide 92] SSA Construction – Across Blocks

• SSA construction with control flow is non-trivial
• Key problem: find value for variable in predecessor
• Naive approach: Φ-nodes for all variables everywhere

– Create empty Φ-nodes for variables, populate variable mapping
– Fill blocks (as on last slide)
– Fill Φ-nodes with last value of variable in predecessor
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3 Intermediate Representations

• Why is this a bad idea? ⇒ don’t do this!
– Extremely inefficient, code size explosion, many dead Φ

[Slide 93] SSA Construction – Across Blocks (“simple”1)

• Key problem: find value in predecessor
• Idea: seal block once all direct predecessors are known

– For acyclic constructs: trivial
– For loops: seal header once loop block is generated

• Current block not sealed: add Φ-node, fill on sealing
• Single predecessor: recursively query that
• Multiple preds.: add Φ-node, fill now

Confer the (very readable) paper for a more formal specification of the algorithm.
The removal of trivial and redundant Φ-nodes is not strictly required.

[Slide 94] SSA Construction – Example

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
func foo (v1)

entry: sealed; varmap: n→ v1, res→ v2

v2 ← 1

header: sealed; varmap: n→ ϕ1, res→ ϕ2

ϕ1 ← ϕ(entry: v1, body: v6)
ϕ2 ← ϕ(entry: v2, body: v5)
v3 ← equal ϕ1, 0
br v3, cont, body

body: sealed; varmap: n→v6, res→ v5

v4 ← mul ϕ1, ϕ1

v5 ← mul ϕ2, v4
v6 ← sub ϕ1, 1
br header

cont: sealed; varmap: res→ ϕ2

ret ϕ2

[Slide 95] SSA Construction – Example

1M Braun et al. “Simple and efficient construction of static single assignment form”. In: CC. 2013,
pp. 102–122. url: https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf.
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In-Class Exercise:

Construct an IR in SSA form for the following C code.
int phis(int a, in b){
a = a * b;
if (a > b * b) {
int c = 1;
while (a > 0)
a = a - c;

} else {
a = b * b;

}
return a;

}

[Slide 96] SSA Construction – Pruned/Minimal Form

• Resulting SSA is pruned – all ϕ are used
• But not minimal – ϕ nodes might have single, unique value
• When filling ϕ, check that multiple real values exist

– Otherwise: replace ϕ with the single value
– On replacement, update all ϕ using this value, they might be trivial now, too

• Sufficient? Not for irreducible CFG
– Needs more complex algorithms2 or different construction method3

AD IN2053 “Program Optimization” covers this more formally

[Slide 97] SSA: Implementation

• Value is often just a pointer to instruction
• ϕ nodes placed at beginning of block

– They execute “concurrently” and on the edges, after all
• Variable number of operands required for ϕ nodes
• Storage format for instructions and basic blocks

– Consecutive in memory: hard to modify/traverse
– Array of pointers: O(n) for a single insertion...
– Linked List: easy to insert, but pointer overhead

Is SSA a graph IR?

Only if instructions have no side effects,consider load, store, call, . . .
These can be solved using explicit dependencies as SSA values, e.g. for memory

2M Braun et al. “Simple and efficient construction of static single assignment form”. In: CC. 2013,
pp. 102–122. url: https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf.

3R Cytron et al. “Efficiently computing static single assignment form and the control dependence graph”.
In: TOPLAS 13.4 (1991), pp. 451–490. url: https://dl.acm.org/doi/pdf/10.1145/115372.
115320.
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3 Intermediate Representations

[Slide 99] Intermediate Representations – Summary

• An IR is an internal representation of a program
• Main goal: simplify analyses and transformations
• IRs typically based on graphs or linear instructions
• Graph IRs: AST, Control Flow Graph, Relational Algebra
• Linear IRs: stack machines, register machines, SSA
• Single Static Assignment makes data flow explicit
• SSA is extremely popular, although non-trivial to construct

[Slide 100] Intermediate Representations – Questions

• Who designs an IR? What are design criteria?
• Why is an AST not suited for program optimization?
• How to convert an AST to another IR?
• What are the benefits/drawbacks of stack/register machines?
• What benefits does SSA offer over a normal register machine?
• How do ϕ-instructions differ from normal instructions?
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4 LLVM-IR

4.1 Overview

[Slide 102] LLVM1

LLVM “Core” Library

• Optimizer and compiler back-end
• “Set of compiler components”

– IRs: LLVM-IR, SelDag, MIR
– Analyses and Optimizations
– Code generation back-ends

• Started from Chris Lattner’s master’s thesis
• Used for C, C++, Swift, D, Julia, Rust, Haskell, . . .

LLVM Project
• Umbrella for several projects related to compilers/toolchain

– LLVM Core
– Clang: C/C++ front-end for LLVM
– libc++, compiler-rt: runtime support
– LLDB: debugger
– LLD: linker
– MLIR: experimental IR framework

[Slide 103] LLVM: Overview

a.c

b.cc

...

LLVM-IR

Front-end

Analyses
Optimization

aarch64.o

x86_64.o

...

CodeGen

• Independent front-end derives LLVM-IR, LLVM does opt. and code gen.
• LTO: dump LLVM-IR into object file, optimize at link-time

1C Lattner and V Adve. “LLVM: A compilation framework for lifelong program analysis & transforma-
tion”. In: CGO. 2004, pp. 75–86. url: http://www.llvm.org/pubs/2004-01-30-CGO-LLVM.pdf.
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4 LLVM-IR

The single IR allows multiple front-ends to reuse the same back-end infrastructure.
Thus, generating LLVM-IR provides an easy way to target a wide range of architec-
tures.

For link-time optimization, the LLVM-IR is stored in the object files instead of the
machine code. At link-time, a linker plugin detects these files, merges the LLVM-IR
from all object files, and then runs the actual compilation as part of the linking step.
We will look at LTO again later when discussing object file generation and linking.

4.2 LLVM-IR

[Slide 104] LLVM-IR: Overview

• SSA-based IR, representations textual, bitcode, in-memory
• Hierarchical structure

– Module
– Functions, global variables
– Basic blocks
– Instructions

• Strongly/strictly typed
define dso_local i32 @foo(i32 %0) {
%2 = icmp eq i32 %0, 0
br i1 %2, label %10, label %3

3: ; preds = %1, %3
%4 = phi i32 [ %7, %3 ], [ 1, %1 ]
%5 = phi i32 [ %8, %3 ], [ %0, %1 ]
%6 = mul nsw i32 %5, %5
%7 = mul nsw i32 %6, %4
%8 = add nsw i32 %5, -1
%9 = icmp eq i32 %8, 0
br i1 %9, label %10, label %3

10: ; preds = %3, %1
%11 = phi i32 [ 1, %1 ], [ %7, %3 ]
ret i32 %11

}

[Slide 105] LLVM-IR: Data types

• First class types:
– i<N> – arbitrary bit width integer, e.g. i1, i25, i1942652
– ptr/ptr addrspace(1) – pointer with optional address space
– float/double/half/bfloat/fp128/. . .
– <N x ty> – vector type, e.g. <4 x i32>

• Aggregate types:
– [N x ty] – constant-size array type, e.g. [32 x float]
– { ty, ... } – struct (can be packed/opaque), e.g. {i32, float}
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4.2 LLVM-IR

• Other types:
– ty (ty, ...) – function type, e.g. {i32, i32} (ptr, ...)
– void
– label/token/metadata

Although structure types can be used in various places in the IR, e.g., a single in-
struction to load a large structure from memory, this is strongly discouraged: LLVM
is not optimized for this and both code quality and compile times get considerably
worse. Only use struct types for globals and to implement multiple return values.

[Slide 106] LLVM-IR: Modules

• Top-level entity, one compilation unit – akin to C/C++
• Contains global values, specified with linkage type
• Global variable declarations/definitions

@externInt = external global i32, align 4

@globVar = global i32 4, align 4

@staticPtr = internal global ptr null, align 8

• Function declarations/definitions
declare i32 @readPtr(ptr)
define i32 @return1() {
ret i32 1

}

• Global named metadata (discarded during compilation)

[Slide 107] LLVM-IR: Functions

• Functions definitions contain all code, not nestable
• Single return type (or void), multiple parameters, list of basic blocks

– No basic blocks ⇒ function declaration
• Specifiers for callconv, section name, other attributes

– E.g.: noinline/alwaysinline, noreturn, readonly
• Parameter and return can also have attributes

– E.g.: noalias, nonnull, sret(<ty>)

[Slide 108] LLVM-IR: Basic Block

• Sequence of instructions
– ϕ nodes come first
– Regular instructions come next
– Must end with a terminator

• First block in function is entry block Entry block cannot be branch target
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4 LLVM-IR

[Slide 109] LLVM-IR: Instructions – Control Flow and Terminators

• Terminators end a block/modify control flow

• ret <ty> <val>/ret void
• br label <dest>/br i1 <cond>, label <then>, label <else>
• switch/indirectbr
• unreachable
• Few others for exception handling

• Not a terminator: call

Although call does modify control flow in some sense, the assumption is that every
function call returns ordinarily. When special control flow for exceptions is needed,
the invoke instruction is used, which specifies one basic block as successor for the
ordinary case and one basic block for the exceptional case.

[Slide 110] LLVM-IR: Instructions – Arithmetic-Logical

• add/sub/mul/udiv/sdiv/urem/srem
– Arithmetic uses two’s complement
– Division corner cases are undefined behavior

• fneg/fadd/fsub/fmul/fdiv/frem
• shl/lshr/ashr/and/or/xor

– Out-of-range shifts have an undefined result
• icmp <pred>/fcmp <pred>/select <cond>, <then>, <else>
• trunc/zext/sext/fptrunc/fpext/fptoui/fptosi/uitofp/sitofp
• bitcast

– Cast between equi-sized datatypes by reinterpreting bits

Technically, out-of-range shifts return poison, see below.

[Slide 111] LLVM-IR: Instructions – Memory and Pointer

• alloca <ty> – allocate addressable stack slot
• load <ty>, ptr <ptr>/store <ty> <val>, ptr <ptr>

– May be volatile (e.g., MMIO) and/or atomic
• cmpxchg/atomicrmw – similar to hardware operations
• ptrtoint/inttoptr
• getelementptr – address computation on ptr/structs/arrays

[Slide 112] LLVM-IR: getelementptr Examples

• %r = getelementptr i32, ptr %p, i64 3
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4.2 LLVM-IR

i32 i32 i32 i32 i32 . . .

%p %r

Equivalent in C: &((int*) p)[3]

• %r = getelementptr {i16, i32}, ptr %p, i64 1, i32 1

i16 i16i32 i32

{i16, i32}

. . .

%p %r

Equivalent in C: &((struct {short _0; int _1;}*) p)[1]._1

• Also works with nested structs and arrays

[Slide 113] LLVM-IR: undef and poison

• undef – unspecified value, compiler may choose any value
– %b = add i32 %a, i32 undef → i32 undef

– %c = and i32 %a, i32 undef → i32 %a

– %d = xor i32 %b, i32 %b → i32 undef

– br i1 undef, label %p, label %q → undefined behavior
• poison – result of erroneous operations

– Delay undefined behavior on illegal operation until actually relevant
– Allows to speculatively “execute” instructions in IR
– %d = shl i32 %b, i32 34 → i32 poison

[Slide 114] LLVM-IR: Intrinsics

• Not all operations provided as instructions
• Intrinsic functions: special functions with defined semantics

– Replaced during compilation, e.g., with instruction or lib call
• Benefit: no changes needed for parser/bitcode/... on addition
• Examples:

– declare iN @llvm.ctpop.iN(iN <src>)

– declare {iN, i1} @llvm.sadd.with.overflow.iN(iN %a, iN %b)

– memcpy, memset, sqrt, returnaddress, . . .

[Slide 115] LLVM-IR: Tools

• clang can emit LLVM-IR bitcode clang -O -emit-llvm -c test.c -o test.bc

• llvm-dis disassembles bitcode to textual LLVM-IR clang -O -emit-llvm -c test.c
-o - | llvm-dis

• llc compiles LLVM-IR (textual or bitcode) to assembly clang -O -emit-llvm -c
test.c -o - | llc clang -O -emit-llvm -c test.c -o - | llvm-dis | llc

Example Listings omitted – they would span several slides

45



4 LLVM-IR

[Slide 116] LLVM-IR: Example

define dso_local <4 x float> @foo2(<4 x float> %0, <4 x float> %1) {
%3 = alloca <4 x float>, align 16
%4 = alloca <4 x float>, align 16
store <4 x float> %0, ptr %3, align 16
store <4 x float> %1, ptr %4, align 16
%5 = load <4 x float>, ptr %3, align 16
%6 = load <4 x float>, ptr %4, align 16
%7 = fadd <4 x float> %5, %6
ret <4 x float> %7

}

[Slide 117] LLVM-IR: Example

define dso_local i32 @foo3(i32 %0, i32 %1) {
%3 = tail call { i32, i1 } @llvm.smul.with.overflow.i32(i32 %0, i32 %1)
%4 = extractvalue { i32, i1 } %3, 1
%5 = extractvalue { i32, i1 } %3, 0
%6 = select i1 %4, i32 -2147483648, i32 %5
ret i32 %6

}

[Slide 118] LLVM-IR: Example

define dso_local i32 @sw(i32 %0) {
switch i32 %0, label %4 [
i32 4, label %5
i32 5, label %2
i32 8, label %3
i32 100, label %5

]
2: ; preds = %1
br label %5

3: ; preds = %1
br label %5

4: ; preds = %1
br label %5

5: ; preds = %1, %1, %4, %3, %2
%6 = phi i32 [ %0, %4 ], [ 9, %3 ], [ 32, %2 ], [ 12, %1 ], [ 12, %1 ]
ret i32 %6

}

[Slide 119] LLVM-IR: Example

In-Class Exercise:

@a = private unnamed_addr constant [7 x i32] [i32 12, i32 32, i32 12,
i32 12, i32 9, i32 12, i32 12], align 4

define dso_local i32 @f(i32 %0) {
%2 = add i32 %0, -4
%3 = icmp ult i32 %2, 7
br i1 %3, label %4, label %13

4: ; preds = %1
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4.3 API

%5 = trunc i32 %2 to i8
%6 = lshr i8 83, %5
%7 = and i8 %6, 1
%8 = icmp eq i8 %7, 0
br i1 %8, label %13, label %9

9: ; preds = %4
%10 = sext i32 %2 to i64
%11 = getelementptr inbounds [7 x i32], ptr @a, i64 0, i64 %10
%12 = load i32, ptr %11, align 4
br label %13

13: ; preds = %1, %4, %9
%14 = phi i32 [ %12, %9 ], [ %0, %4 ], [ %0, %1 ]
ret i32 %14

}

4.3 API

[Slide 120] LLVM-IR API

• LLVM offers two APIs: C++ and C
– C++ is the full API, exposing nearly all internals
– C API is more limited, but more stable

• Nearly all major versions have breaking changes

• Some support for multi-threading:
– All modules/types/... associated with an LLVMContext
– Different contexts may be used in different threads

[Slide 121] LLVM-IR C++ API: Basic Example

#include <llvm/IR/IRBuilder.h>
int main(void) {
llvm::LLVMContext ctx;
auto modUP = std::make_unique<llvm::Module>("mod", ctx);

llvm::Type* i64 = llvm::Type::getInt64Ty(ctx);
llvm::FunctionType* fnTy = llvm::FunctionType::get(i64, {i64}, false);
llvm::Function* fn = llvm::Function::Create(fnTy,

llvm::GlobalValue::ExternalLinkage, "addOne", modUP.get());
llvm::BasicBlock* entryBB = llvm::BasicBlock::Create(ctx, "entry", fn);

llvm::IRBuilder<> irb(entryBB);
llvm::Value* add = irb.CreateAdd(fn->getArg(0), irb.getInt64(1));
irb.CreateRet(add);
modUP->print(llvm::outs(), nullptr);
return 0;

}
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4 LLVM-IR

[Slide 122] LLVM-IR API: Almost Everything is a Value... (excerpt)

Value Argument
BasicBlock
User Constant ConstantData ConstantInt

ConstantPointerNull
UndefValue PoisonValue
. . .

ConstantExpr . . .
GlobalValue GlobalAlias

GlobalObject Function
GlobalVariable

Instruction PHINode
BranchInst
BinaryOperator
CallBase CallInst IntrinsicInst . . .
StoreInst
UnaryInstruction AllocaInst

CastInst
LoadInst
. . .

. . .

See LLVM Doxygena for a full graph.
ahttps://llvm.org/doxygen/classllvm_1_1Value.html

[Slide 123] LLVM-IR API: Programming Environment

• LLVM implements custom RTTI
– isa<>, cast<>, dyn_cast<>

• LLVM implements a multitude of specialized data structures
– E.g.: SmallVector<T, N> to keep N elements stack-allocated
– Custom vectors, sets, maps; see manual2

• Preferably uses ArrayRef, StringRef, Twine for references
• LLVM implements custom streams instead of std streams

– outs(), errs(), dbgs()

Many of these data types are used for efficiency. Standard C++ RTTI is inefficient
while LLVM’s implementation is very flexible, fast, and has a low memory usage in
data structures.
SmallVector is preferred over std::vector not just because of the inline storage,

but also because (for non-char types) it only uses 32-bit integers for length/capacity
(lower memory usage, often sufficient) and grows more efficiently for trivially movable
data structures.
Twine is a lazily evaluated string. For example, when specifying Twine("foo")

+ 5, on-stack data structures are constructed to represent this sequence, but the
resulting string is constructed only when and if it is actually used. This also allows
constructing strings directly into target buffers.

2https://www.llvm.org/docs/ProgrammersManual.html
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4.4 IR Implementation

Standard C++ streams are not just inefficient, implementations also tend to inject
global constructors in all files. Therefore, LLVM has its own stream implementation.
With raw_svector_ostream and raw_string_ostream, a raw_ostream can be used
to write into a SmallVector or std::string.

[Slide 124] LLVM-IR API: Use Tracking

• Values track their users
llvm::Value* v = /* ... */;
for (llvm::User* u : v->users())
if (auto i = llvm::dyn_cast<llvm::Instruction>(u))
// ...

• Simplifies implementation of analyses
• Allows for easy replacement:

– inst->replaceAllUsesWith(replVal);

4.4 IR Implementation

[Slide 125] LLVM IR Implementation: Value/User

llvm::Value Type
Type*

UseList
Use*

subclassID
unsigned

flags. . .
unsigned

llvm::User
intrusive operands
fixed at allocation

Value Fields of
subclasses

Op 0
Use

Op 1
Use

. . .

llvm::User
hung-off operands
dynamic number

Value Fields of
subclasses

Operands
Use*

Op 0
Use

Op 1
Use

Op 2
Use

PHINode additionally stores n BasicBlock* after the operands, but aren’t users of blocks.

Every LLVM Instruction is a separate heap allocation. As the number of operands
is typically known when constructing the instruction, they are allocated after the
instruction data structure (this is implemented by User).

It can happen that the number of operands increases beyond the allocated storage,
for example, when a PHINode gets more operands than initially expected. In such
cases, the operand list gets hung off into a separate allocation.

As a special case, PHINode needs to store the associated BasicBlocks in addition
to the merged values. The blocks are stored after the operands, but are not operands
themselves.
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[Slide 126] LLVM IR Implementation: Use

Type
Type*

UseList
Use*

. . .

Operand (llvm::Use)

Type
Type*

UseList
Use*

. . . Value
Value*

Next
Use*

Prev
Use**

Parent
User*

. . .

null

null

Type
Type*

UseList
Use*

. . . Value
Value*

Next
Use*

Prev
Use**

Parent
User*

. . .

null

The use list is a doubly-linked list. Starting from Value::UseList, one can find all
used by following the Use::Next pointer. The Use::Prev pointer does not point to
the previous Use, but the previous Use::Next pointer or the Value::UseList — this
way, unlinking does not need to distinguish the special case of the beginning of the
use list.

A Use also has a pointer to the actual Value, so that when inspecting an operand
one can actually find the operand itself.

There is also a Parent pointer, which points to the User which owns the operand:
when iterating over the use list, this is the only way to find out which instruction
(User) uses the value.

In sum, an LLVM-IR operand is quite large, using 32 bytes on a 64-bit system.
In addition to every instruction being a separate heap allocation and every operand
update requires updating the use list (less data locality), the IR data structures are
(in absolute terms) not very efficient — despite being fairly optimized for the use
cases they serve.

[Slide 127] LLVM IR Implementation: Instructions/Blocks

• Instruction and BasicBlock have pointers to parent and next/prev
– Linked list updated on changes and used for iteration
– Instructions have cached order (integer) for fast “comes before”

• BasicBlock successors: blocks used by terminator
• BasicBlock predecessors:

– Iterate over users of block – these are terminators (and blockaddress)
– Ignore non-terminators, parent of using terminator is predecessor
– Same predecessor might be duplicated (⇝ getUniquePredecessor())

• Finding first non-ϕ requires iterating over ϕ-nodes
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4.5 IR Design

4.5 IR Design

[Slide 128] LLVM and IR Design

• LLVM provides a decent general-purpose IR for compilers
• But: not ideal for all purposes

– High-level optimizations difficult, e.g. due to lost semantics
– Several low-level operations only exposed as intrinsics
– IR rather complex, high code complexity
– High compilation times, not very efficient data structures

• Thus: heavy trend towards custom IRs

[Slide 129] IR Design: High-level Considerations

• Define purpose!
• Structure: SSA vs. something else; control flow

– Control flow: basic blocks/CFG vs. structured control flow
– Remember: SSA can be considered as a DAG, too
– SSA is easy to analyse, but non-trivial to construct/leave

• Broader integration: keep multiple stages in single IR?
– Example: create IR with high-level operations, then incrementally lower
– Model machine instructions in same IR?
– Can avoid costly transformations, but adds complexity

[Slide 130] IR Design: Operations

• Data types
– Simple type structure vs. complex/aggregate types?
– Keep relation to high-level types vs. low-level only?
– Virtual data types, e.g. for flags/memory?

• Instruction format
– Single vs. multiple results?
– Strongly typed vs. more generic result/operand types?
– Operand number – fixed vs. dynamic?

[Slide 131] IR Design: Operations

• Allow instruction side effects?
– E.g.: memory, floating-point arithmetic, implicit control flow

• Operation complexity and abstraction
– E.g.: CheckBounds, GetStackPtr, HashInt128
– E.g.: load vs. MOVQconstidx4

• Extensibility for new operations (e.g., new targets, high-level ops)
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4 LLVM-IR

[Slide 132] IR Design: Implementation

• Maintain user lists?
– Simplifies optimizations, but adds considerable overhead
– Replacement can use copy and lazy canonicalization
– User count might be sufficient alternative

• Storage layout: operation size and locations
– For performance: reduce heap allocations, small data structures

• Special handling for arguments vs. all-instructions?
• Metadata for source location, register allocation, etc.
• SSA: ϕ nodes vs. block arguments?

[Slide 133] IR Example: Go SSA

• Strongly typed
– Structured types decomposed

• Explicit memory side-effects
• Also High-level operations

– IsInBounds, VarDef
• Only one type of value/instruction

– Const64, Arg, Phi
• No user list, but user count
• Also used for arch-specific repr.

env GOSSAFUNC=fac go build test.go
b1:

v1 (?) = InitMem <mem>
v2 (?) = SP <uintptr>
v5 (?) = LocalAddr <*int> {~r1} v2 v1
v6 (7) = Arg <int> {n} (n[int])
v8 (?) = Const64 <int> [1] (res[int])
v9 (?) = Const64 <int> [2] (i[int])

Plain -> b2 (+9)
b2: <- b1 b4

v10 (9) = Phi <int> v9 v17 (i[int])
v23 (12) = Phi <int> v8 v15 (res[int])
v12 (+9) = Less64 <bool> v10 v6

If v12 -> b4 b5 (likely) (9)
b4: <- b2

v15 (+10) = Mul64 <int> v23 v10 (res[int])
v17 (+9) = Add64 <int> v10 v8 (i[int])

Plain -> b2 (9)
b5: <- b2

v20 (12) = VarDef <mem> {~r1} v1
v21 (+12) = Store <mem> {int} v5 v23 v20

Ret v21 (+12)

[Slide 134] LLVM-IR – Summary

• LLVM is a modular compiler framework
• Extremely popular and high-quality compiler back-end
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4.5 IR Design

• Primarily provides optimizations and a code generator
• Main interface is the SSA-based LLVM-IR

– Easy to generate, friendly for writing front-ends/optimizations
• IR design depends on purpose and integration constraints

[Slide 135] LLVM-IR – Questions

• What is the structure of an LLVM-IR module/function?
• Which LLVM-IR data types exist? How do they relate to the target architecture?
• How do semantically invalid operations in LLVM-IR behave?
• What is special about intrinsic functions?
• How to derive LLVM-IR from C code using Clang?
• How does LLVM’s replaceAllUsesWith work? How could this work without

building/maintaining user lists?
• How can an SSA-based IR make side effects explicit?
• How would you design an IR for optimizing Brainfuck?
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5 Analyses and Transformations

5.1 Motivation

[Slide 137] Program Transformation: Motivation

• “User code” is often not very efficient
• Also: no need to, compiler can (often?) optimize better

– More knowledge: e.g., data layout, constants after inlining, etc.
• Allows for more pragmatic/simple code
• Generating “better” IR code on first attempt is expensive

– What parts are actually used? How to find out?
• Transformation to “better” code must be done somewhere

• Optimization is a misnomer: we don’t know whether it improves code!
– Many transformations are driven by heuristics

• Many types of optimizations are well-known1

5.2 Dead Code Elimination

[Slide 138] Dead Block Elimination

• CFG not necessarily connected
• E.g., consequence of optimization

– Conditional branch → unconditional branch
• Removing dead blocks is trivial

1. DFS traversal of CFG from entry, mark visited blocks

2. Remove unmarked blocks

[Slide 139] Optimization Example 1

define i32 @fac(i32 %0) {
br label %for.header

for.header: ; preds = %for.body, %1
%a = phi i32 [ 1, %1 ], [ %a.new, %for.body ]
%b = phi i32 [ 0, %1 ], [ %b.new, %for.body ]
%i = phi i32 [ 0, %1 ], [ %i.new, %for.body ]

1FE Allen and J Cocke. A catalogue of optimizing transformations. 1971. url: https://www.clear.
rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf.
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5 Analyses and Transformations

%cond = icmp sle i32 %i, %0
br i1 %cond, label %for.body, label %exit

for.body: ; preds = %for.header
%a.new = mul i32 %a, %i
%b.new = add i32 %b, %i
%i.new = add i32 %i, 1
br label %for.header

exit: ; preds = %for.header
%absum = add i32 %a, %b
ret i32 %a

}

[Slide 140] Simple Dead Code Elimination (DCE)

• Look for trivially dead instructions
– No users or side-effects
– Calls might be removed

1. Add all instructions to work queue

2. While work queue not empty:

a) Check for deadness (zero users, no side-effects)

b) If dead, remove and add all operands to work queue

Warning: Don’t implement it this naively, this is inefficient

[Slide 141] Applying Simple DCE

define i32 @fac(i32 %0) {
eff.: cf br label %for.header

for.header: ; preds = %for.body, %1
users: 2 %a = phi i32 [ 1, %1 ], [ %a.new, %for.body ]
users: 2 %b = phi i32 [ 0, %1 ], [ %b.new, %for.body ]
users: 4 %i = phi i32 [ 0, %1 ], [ %i.new, %for.body ]
users: 1 %cond = icmp sle i32 %i, %0
eff.: cf br i1 %cond, label %for.body, label %exit

for.body: ; preds = %for.header
users: 1 %a.new = mul i32 %a, %i
users: 1 %b.new = add i32 %b, %i
users: 1 %i.new = add i32 %i, 1
eff.: cf br label %for.header

exit: ; preds = %for.header
users: 0 %absum = add i32 %a, %b
eff.: cf ret i32 %a

}

In this example, the instruction %abssum can be removed. This reduces the number
of users of %a and %b by 1. As no other instructions have a user count of 0 after this
change, the algorithm terminates.
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5.2 Dead Code Elimination

[Slide 142] Dead Code Elimination

• Problem: unused value cycles
• Idea: find “value sinks” and mark all needed values as live unmarked values can be

removed
– Sink: instruction with side effects (e.g., store, control flow)

1. Only mark instrs. with side effects as live

2. Populate work list with newly added live instrs.

3. While work list not empty:

a) Mark dead operand instructions as live and add to work list

4. Remove instructions not marked as live

[Slide 143] Applying Liveness-based DCE

define i32 @fac(i32 %0) {
live br1 label %for.header
for.header: ; preds = %for.body, %1
live %a = phi i32 [ 1, %1 ], [ %a.new, %for.body ]

live %i = phi i32 [ 0, %1 ], [ %i.new, %for.body ]
live %cond = icmp sle i32 %i, %0
live br2 i1 %cond, label %for.body, label %exit
for.body: ; preds = %for.header
live %a.new = mul i32 %a, %i

live %i.new = add i32 %i, 1
live br3 label %for.header
exit: ; preds = %for.header

live ret i32 %a
}

Work list (stack)

This algorithm finds the dead value cycle pf %b from the previous example. (Refer
to the slide deck for the animated version.)

[Slide 144] Liveness-based DCE: Work List Implementation

In-Class Exercise:

• What operations are performed on a work list?
– Insert instruction
– Remove any instruction
– Test whether instruction is contained
– Get and remove next instruction to handle
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5 Analyses and Transformations

• How to implement an efficient work list?

[Slide 145] Optimization Example 2

define i32 @foo(i32 %0, ptr %1, ptr %2) {
%4 = zext i32 %0 to i64
%5 = getelementptr inbounds i32, ptr %1, i64 %4
%6 = load i32, ptr %5, align 4
%7 = zext i32 %0 to i64
%8 = getelementptr inbounds i32, ptr %2, i64 %7
%9 = load i32, ptr %8, align 4
%10 = add nsw i32 %6, %9
ret i32 %10

}

[Slide 146] Common Subexpression Elimination (CSE) – Attempt 1

• Idea: find/eliminate redundant computation of same value
• Keep track of previously seen values in hash map
• Iterate over all instructions

– If found in map, remove and replace references
– Otherwise add to map

• Easy, right?

[Slide 147] CSE Attempt 1 – Example 1

define i32 @foo(i32 %0, ptr %1, ptr %2) {
→ ht %4 = zext i32 %0 to i64
→ ht %5 = getelementptr inbounds i32, ptr %1, i64 %4
→ ht %6 = load i32, ptr %5, align 4
dup %4 %7 = zext i32 %0 to i64
→ ht %8 = getelementptr inbounds i32, ptr %2, i64 %7%4
→ ht %9 = load i32, ptr %8, align 4
→ ht %10 = add nsw i32 %6, %9
→ ht ret i32 %10

}

• Obsolete instr. can be killed immediately, or in a later DCE

[Slide 148] CSE Attempt 1 – Example 2

define i32 @square(i32 %a, i32 %b) {
entry:

→ ht %cmp = icmp slt i32 %a, %b
→ ht br i1 %cmp, label %if.then, label %if.end

if.then: ; preds = %entry
→ ht %add1 = add i32 %a, %b
→ ht br label %if.end

if.end: ; preds = %if.then, %entry
→ ht %condvar = phi i32 [ %add1, %if.then ], [ %a, %entry ]
dup %add1 %add2 = add i32 %a, %b
→ ht %res = add i32 %condvar, %add2%add1
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5.3 Dominator Tree

→ ht ret i32 %res
}

Instruction does not dominate all uses! error: input module is broken!

5.3 Dominator Tree

[Slide 149] Domination

• Remember: CFG G = (N,E, s) with digraph (N,E) and entry s ∈ N
• Dominate: d dom n iff every path from s to n contains d

– Dominators of n: DOM(n) = {d|d dom n}
• Strictly dominate: d sdom n⇔ d dom n ∧ d ̸= n
• Immediate dominator: idom (n) = d : d sdom n ∧ ̸ ∃d′.d sdom d′ ∧ d′ sdom n

⇒ All strict dominators are always executed before the block
⇒ All values from dominators available/usable
⇒ All values not from dominators not usable

[Slide 150] Dominator Tree

• Tree of immediate dominators
• Allows to iterate over blocks in pre-order/post-order
• Answer a sdom b quickly

Control Flow Graph
a

b

c d

e

fg

Dominator Tree
a

b

c d

e

f

g

[Slide 151] Dominator Tree – Example

In-Class Exercise:

Construct the dominator tree for the following CFGs (entry at a):
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a

b

c

d e

f

g h

a

b

c

d

e f

g

h

i

[Slide 152] Dominator Tree: Construction

• Naive: inefficient (but reasonably simple)2

– For each block: find a path from the root – superset of dominators
– Remove last block on path and check for alternative path
– If no alternative path exists, last block is idom

• Lengauer–Tarjan: more efficient methods3

– Simple method in O(m log n); sophisticated method in O(m ·α(m,n)) (α(m,n)

is the inverse Ackermann function, grows extremely slowly)

– Used in some compilers4

• Semi-NCA: O(n2), but lower constant factors5

Most notable, LLVM doesn’t use the Lengauer–Tarjan algorithm. Instead, they use
the Semi-NCA algorithm, which has O(n2) runtime, but lower constant factors and
is therefore substantially faster for certain (typical) inputsa.
aJ Kuderski. “Dominator Trees and incremental updates that transcend times”. In: LLVM Dev

Meeting. Oct. 2017. url: https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_
Trees.pdf.

[Slide 153] Dominator Tree: Implementation

• Per node store: idom, idom-children, DFS pre-order/post-order number
• Get immediate dominator: ...lookup idom
• Iterate over all dominators/dominated by: ...trivial

2ES Lowry and CW Medlock. “Object code optimization”. In: CACM 12.1 (1969), pp. 13–22. url:
https://dl.acm.org/doi/pdf/10.1145/362835.362838.

3T Lengauer and RE Tarjan. “A fast algorithm for finding dominators in a flowgraph”. In: TOPLAS
1.1 (1979), pp. 121–141. url: https://dl.acm.org/doi/pdf/10.1145/357062.357071

4Example: https://github.com/WebKit/WebKit/blob/aabfacb/Source/WTF/wtf/Dominators.h
5L Georgiadis. “Linear-Time Algorithms for Dominators and Related Problems”. PhD thesis. Princeton

University, Nov. 2005
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5.4 Common Subexpression Elimination

• Check whether a sdom b6

– a.preNum < b.preNum ∧ a.postNum > b.postNum
– After updates, numbers might be invalid: recompute or walk tree

• Problem: dominance of unreachable blocks ill-defined ⇝ special handling

5.4 Common Subexpression Elimination

[Slide 154] CSE Attempt 2

• Option 1:
– For identical instructions, store all
– Add dominance check before replacing
– Visit nodes in reverse post-order (i.e., topological order)

• Option 2:7

– Do a DFS over dominator tree
– Use scoped hashmap to track available values

Does this work? Yes.

[Slide 155] CSE: Hashing an Instruction (and Beyond)

• Needs hash function and “relaxed” equality
• Idea: combine opcode and operands/constants into hash value

– Use pointer or index for instruction result operands
• Canonicalize commutative operations

– Order operands deterministically, e.g., by address
• Identities: a+(b+c) vs. (a+b)+c

[Slide 156] Global Value Numbering – or: advanced CSE

• Hash-based approach only catches trivially removable duplicates
• Alternative: partition values into congruence classes

– Congruent values are guaranteed to always have the same value
• Optimistic approach: values are congruent unless proven otherwise
• Pessimistic approach: values are not congruent unless proven
• Combinable with: reassociation, DCE, constant folding
• Rather complex, but can be highly beneficial8

6PF Dietz. “Maintaining order in a linked list”. In: STOC. 1982, pp. 122–127. url: https://dl.acm.
org/doi/pdf/10.1145/800070.802184.

7P Briggs, KD Cooper, and LT Simpson. Value numbering. Tech. rep. CRPC-TR94517-S. Rice Univer-
sity, 1997. url: https://www.cs.rice.edu/~keith/Promo/CRPC-TR94517.pdf.gz.

8K Gargi. “A sparse algorithm for predicated global value numbering”. In: PLDI. 2002, pp. 45–56.
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5 Analyses and Transformations

5.5 Simple Transformations

[Slide 157] Simple Transformations: Inlining

• Estimate whether inlining is beneficial
– Savings of avoided call/computations/branches; cost of increased size

• Copy original function in place of the call
– Split basic block containing function call

• Replace returns with branches and ϕ-node to/at continuation point
• Move alloca to beginning or save stack pointer

– Prevent unbounded stack growth in loops
– LLVM provides stacksave/stackrestore intrinsics

• Exceptions may need special treatment

[Slide 158] Simple Transformations: Mem2Reg and SROA

• Mem2reg: promote alloca to SSA values/phis
– Condition: only load/store, no address taken
– Essentially just SSA construction
– Not run in default pipeline, subsumed by SROA

• SROA: scalar replacement of aggregate
– Separate structure fields into separate variables
– Also promote them to SSA

5.6 Loop Analysis

[Slide 159] What is a Loop?

void func() {
while (a()) {
if (b()) {
d();
break;

}
c();

}
e();

}

a

b

c d

e

Blocks executed
more than once • Loops in source code

̸= loops in CFG
• d is not part of loop:

executed at most once
⇝ Need algorithm to find

loops in CFG

[Slide 160] Loops

• Loop: maximal SCC L with at least one internal edge9 (strongly connected component

(SCC): all blocks reachable from each other)

9P Havlak. “Nesting of reducible and irreducible loops”. In: TOPLAS 19.4 (1997), pp. 557–567. url:
https://dl.acm.org/doi/pdf/10.1145/262004.262005.
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5.6 Loop Analysis

– Entry: block with an edge from outside of L
– Header h: first entry found (might be ambiguous)

• Loop nested in L: loop in subgraph L \ {h}

Entry +
Header

a

b

cd Note: {b, c} alone is
no loop, not maximal

a

b

c d

e

Entry +
Header

a

b

d

cEntry +
Header

Entry

[Slide 161] Natural Loops

• Natural Loop: loop with single entry
⇒ Header is unique
⇒ Header dominates all block
⇒ Loop is reducible

• Backedge: edge from block to header
• Predecessor: block with edge into loop
• Preheader: unique predecessor

Formal Definition
Loop L is reducible iff ∃h ∈ L . ∀n ∈ L . h dom n

CFG is reducible iff all loops are reducible

preheader

header

exiting

exit

latch

backedge backedge

[Slide 162] Finding Natural Loops

• Modified version10 of Tarjan’s algorithm11

• Iterate over dominator tree in post order
• Each block: find predecessors dominated by the block

– None ⇝ no loop header, continue
– Any ⇝ loop header, these edges must be backedges

• Walk through predecessors until reaching header again
– All blocks on the way must be part of the loop body
– Might encounter nested loops, update loop parent

10G Ramalingam. “Identifying loops in almost linear time”. In: TOPLAS 21.2 (1999), pp. 175–188. url:
https://dl.acm.org/doi/pdf/10.1145/316686.316687.

11R Tarjan. “Testing flow graph reducibility”. In: STOC. 1973, pp. 96–107. url: https://dl.acm.org/
doi/pdf/10.1145/800125.804040.
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5 Analyses and Transformations

[Slide 163] Finding Natural Loops: Example

Control Flow Graph

a

b

c

d

e

f

g

Dominator Tree

a

b

c

d

e

f

g

Loop Info

Loop A : {c}
header: c; parent: D
Loop B : {f,g}
header: f; parent: C
Loop C : {b,f,g}
header: b; parent: D
Loop D : {a,b,c,d,e,f,g}
header: a; parent: NULL

[Slide 164] Loop Analysis – Example

In-Class Exercise:

Apply the previous algorithm to find loops in the following CFGs (entry at a):

a

b

c

d e

f

g h

a

b

c

d

e f

g

h

i

[Slide 165] Loop Invariant Code Motion (LICM)

• Analyze loops, iterate over loop tree in post-order
– I.e., visit inner loops first

↑ Hoist:12 iterate over blocks of loop in reverse post-order
– For each movable inst., check for loop-defined operands
– If not, move to preheader (create one, if not existent)
– Otherwise, add inst. to set of values defined inside loop

↓ Sink: Iterate over blocks of loop in post-order
12https://github.com/bytecodealliance/wasmtime/blob/bd6fe11/cranelift/codegen/src/licm.rs
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5.7 LLVM Passes

– For each movable inst., check for users inside loop
– If none, move to unique exit (if existent)

5.7 LLVM Passes

[Slide 166] Transformations and Analyses in LLVM: Passes

• Transformations and analyses organized in passes
• Pass can operate on Module/(CGSCC)/Function/Loop
• Analysis pass: takes input IR and returns analysis result

– May also use results of other analyses; results are cached
• Transformation pass: takes input IR and returns preserved analyses

– Can use analyses, which are re-run when outdated
• Pass manager executes passes on same granularity

– Otherwise, use adaptor: createFunctionToLoopPassAdaptor (and preferably
combine multiple smaller passes into a separate pass manager)

[Slide 167] Using LLVM (New) Pass Manager

void optimize(llvm::Function* fn) {
llvm::PassBuilder pb;
llvm::LoopAnalysisManager lam{};
llvm::FunctionAnalysisManager fam{};
llvm::CGSCCAnalysisManager cgam{};
llvm::ModuleAnalysisManager mam{};
pb.registerModuleAnalyses(mam);
pb.registerCGSCCAnalyses(cgam);
pb.registerFunctionAnalyses(fam);
pb.registerLoopAnalyses(lam);
pb.crossRegisterProxies(lam, fam, cgam, mam);

llvm::FunctionPassManager fpm{};
fpm.addPass(llvm::DCEPass());
fpm.addPass(llvm::createFunctionToLoopPassAdaptor(llvm::LoopRotatePass()));
fpm.run(*fn, fam);

}

[Slide 168] Writing a Pass for LLVM’s New PM – Part 1

#include "llvm/IR/PassManager.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"

class TestPass : public llvm::PassInfoMixin<TestPass> {
public:
llvm::PreservedAnalyses run(llvm::Function &F,

llvm::FunctionAnalysisManager &AM) {
// Do some magic
llvm::DominatorTree *DT = &AM.getResult<llvm::DominatorTreeAnalysis>(F);
// ...
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5 Analyses and Transformations

llvm::errs() << F.getName() << "\n";
return llvm::PreservedAnalyses::all();

}
};
// ...

[Slide 169] Writing a Pass for LLVM’s New PM – Part 2

extern "C" ::llvm::PassPluginLibraryInfo LLVM_ATTRIBUTE_WEAK
llvmGetPassPluginInfo() {
return { LLVM_PLUGIN_API_VERSION, "TestPass", "v1",
[] (llvm::PassBuilder &PB) {
PB.registerPipelineParsingCallback(
[] (llvm::StringRef Name, llvm::FunctionPassManager &FPM,

llvm::ArrayRef<llvm::PassBuilder::PipelineElement>) {
if (Name == "testpass") {
FPM.addPass(TestPass());
return true;

}
return false;

});
} };

}
c++ -shared -o testpass.so testpass.cc -lLLVM -fPIC

opt -S -load-pass-plugin=$PWD/testpass.so -passes=testpass input.ll

[Slide 170] Analyses and Transformations – Summary

• Program Transformation critical for performance improvement
• Code not necessarily better
• Analyses are important to drive transformations

– Dominator tree, loop detection, value liveness
• Important optimizations

– Dead code elimination, common sub-expression elimination, loop-invariant
code motion

• Compilers often implement transformations as passes
• Analyses may be invalidated by transformations, needs tracking

[Slide 171] Analyses and Transformations – Questions

• Why is “optimization” a misleading name for a transformation?
• How to find unused code sections in a function’s CFG?
• Why is a liveness-based DCE better than a simple, user-based DCE?
• What is a dominator tree useful for?
• What is the difference between an irreducible and a natural loop?
• How to find natural loops in a CFG?
• How does the algorithm handle irreducible loops?
• Why is sinking a loop-invariant inst. harder than hoisting?
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7 Instruction Selection

7.1 Overview

[Slide 208] Code Generation – Overview

• Instruction Selection
– Map IR to assembly
– Keep code shape and storage; change operations

• Instruction Scheduling
– Optimize order to hide latencies
– Keep operations, may increases demand for registers

• Register Allocation
– Map virtual to architectural registers and stack
– Adds operations (spilling), changes storage

[Slide 209] Instruction Selection (ISel) – Overview

• Find machine instructions to implement abstract IR
• Typically separated from scheduling and register allocation
• Input: IR code with abstract instructions
• Output: lower-level IR code with target machine instructions

i64 %10 = add %8, %9
i8 %11 = trunc %10
i64 %12 = const 24
i64 %13 = add %7, %12
store %11, %13

i64 %10 = ADD %8, %9
STRB %10, [%7+24]

[Slide 210] ISel – Typical Constraints

• Target offers multiple ways to implement operations
– imul x, 2, add x, x, shl x, 1, lea x, [x+x]

• Target operations have more complex semantics
– E.g., combine truncation and offset computation into store
– Can have multiple outputs, e.g. value+flags, quotient+remainder

• Target has multiple register sets, e.g. GP and FP/SIMD
– Important to consider even before register allocation

• Target requires specific instruction sequences
– E.g., for macro fusion

69



7 Instruction Selection

– Often represented as pseudo-instructions until assembly writing

RISC-V, for example, is an architecture which specifies several instruction se-
quences that are intended to be macro-fused by the processor for improved
performance.

[Slide 211] Optimal ISel

• Find most performant instruction sequence with same semantics (?)
– I.e., no program with better “performance” exists
– Performance ≈ instructions associated with specific costs

• Problem: optimal code generation is undecidable

The halting problem can be reduced to optimal code generation: if a program
continues forever, the program has to be optimized to a simple endless loop to
be optimal.

• Alternative: optimal tiling of IR with machine code instructions
– IR as dataflow graph, instr. tiles to optimally cover graph
– NP-complete1

The cited paper shows how SAT can be reduced to optimal tiling of a
DAG.

– Additional complication: many different ways to express same computation

[Slide 212] Avoiding ISel Altogether

Use an interpreter

+ Fast “compilation time”, easy to implement
− Slow execution time
• Best if code is executed once

Interpreters are in many cases a good alternative to writing code generators — the
latter are highly platform-dependent and involve several hard problem, while the
former are easy to write in portable languages.

7.2 Macro Expansion

[Slide 213] Macro Expansion

• Expand each IR operation with corresponding machine instrs

1DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54.
url: http://llvm.org/pubs/2008-CGO-DagISel.pdf.
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7.2 Macro Expansion

%5a = movz 12345
%5 = add %1, %5a

%5 = add %1, 12345

%6 = and %2, 7%6 = and %2, 7

%7a = lsl %5, %6
%7b = cmp %6, 64
%7 = csel %7a, xzr, %7b, lo

%7 = shl %5, %6

[Slide 214] Macro Expansion

• Oldest approach, historically also does register allocation
– Also possible by walking AST

+ Very fast, linear time, simple to implement, easy to port
− Inefficient and large output code
• Used by, e.g., LLVM FastISel, Go, GCC

[Slide 215] Peephole Optimization

• Plain macro expansion leads to suboptimal results
• Idea: replace inefficient instruction sequences2

• Originally: physical window over assembly code
– Replace with more efficient instructions having same effects
– Possibly with allocated registers

• Extension: do expansion before register allocation3

– Expand IR into Register Transfer Lists (RTL) with temporary registers
– While combining, ensure that each RTL can be implemented as single instr.

GCC’s RTL is heavily inspired by the original idea of register transfer lists. How-
ever, due to severe limitations when optimizing code, the implementation was later
expanded and some RTL passes also make use of SSA form.

[Slide 216] Peephole Optimization

• Originally covered only adjacent instructions
• Can also use logical window of data dependencies

– Problem: instructions with multiple uses
– Needs more sophisticated matching schemes for data deps. ⇒ Tree-pattern

matching
+ Fast, also allows for target-specific sequences
− Pattern set grows large, limited potential
• Widely used today at different points during compilation

2WM McKeeman. “Peephole optimization”. In: CACM 8.7 (1965), pp. 443–444. url: https://dl.
acm.org/doi/pdf/10.1145/364995.365000.

3JW Davidson and CW Fraser. “Code selection through object code optimization”. In: TOPLAS 6.4
(1984), pp. 505–526. url: https://dl.acm.org/doi/pdf/10.1145/1780.1783.
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7 Instruction Selection

7.3 Tree Covering

[Slide 217] ISel as Graph Covering – High-level Intuition

• Idea: represent program as data flow graph
• Tree: expression, comb. of single-use SSA instructions (local ISel)
• DAG: data flow in basic block, e.g. SSA block (local ISel)
• Graph: data flow of entire function, e.g. SSA function (global ISel)
• ISA “defines” pattern set of trees/DAGs/graphs for instrs.
• Cover data flow tree/DAG/graph with least-cost combination of patterns

– Patterns in data flow graph may overlap
– For non-global ISel: values used outside of block must be generated

[Slide 218] Tree Covering: Converting SSA into Trees

• SSA form:
%4 = shl %1, 4
%5 = add %2, %4
%6 = add %3, %4
%7 = load %5

live-out: %6, %7

• Data flow graph:

%1

«

+

ld

4

%2%3

+

• Method 1: Edge Splitting

%1

«

4 %3

+

%4 %4

+

ld

%2

• Method 2: Node Duplication

%1

«

+

%3

4 %1

«

+

ld

4

%2

72



7.3 Tree Covering

[Slide 219] Tree Covering: Patterns

Pattern Cost Instruction

P0 GPR1 → «(GPR2, K1) 1 lsl R1, R2, #K1

P1 GPR1 → +(GPR2, GPR3) 1 add R1, R2, R3

P2 GPR1 → +(GPR2, «(GPR3, K1) 2 add R1, R2, R3, lsl #K1

P3 GPR1 → +(«(GPR2, K1), GPR2) 2 add R1, R3, R2, lsl #K1

P4 GPR1 → ld(GPR2) 2 ldr R1, [R2]
P5 GPR1 → ld(+(GPR2, GPR3)) 2 ldr R1, [R2, R3]
P6 GPR1 → ld(+(GPR2, «(GPR3, K1)) 3 ldr R1, [R2, R3, lsl #K1]
P7 GPR1 → ld(+(«(GPR2, K1), GPR3) 3 ldr R1, [R3, R2, lsl #K1]
P8 GPR1 → *(GPR2, GPR3) 3 madd R1, R2, R3, xzr
P9 GPR1 → +(*(GPR2, GPR3), GPR4) 3 madd R1, R2, R3, R4

P10 GPR1 → K1 1 mov R1, K1

...
...

...
...

[Slide 220] Tree Covering: Greedy/Maximal Munch

• Top-down always take largest pattern
• Repeat for sub-trees, until everything is covered

+ Easy to implement, fast
− Result might be non-optimum

[Slide 221] Tree Covering: Greedy/Maximal Munch – Example

+

*

a b

«

c 2

Matching Patterns:

• +: P1 – cost 1 – covered nodes: 1
• +: P2 – cost 2 – covered nodes: 3 –beamer|beamer: best
• +: P9 – cost 3 – covered nodes: 2
• *: P8 – cost 3 – covered nodes: 1 – best

Total cost: 5
madd %1, %a, %b, xzr
add %2, %1, %c, lsl #2
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7 Instruction Selection

[Slide 222] Tree Covering: with LR-Parsing?

• Can we use (LR-)parsing for instruction selection? Yes!4

– Pattern set = grammar; IR (in prefix notation) = input

Advantages

• Possible in linear time
• Can be formally verified
• Implementation can be generated automatically

Disadvantages

• Constraints must map to non-terminals
– Constant ranges, reg types, . . .

• CISC: handle all operand combinations
– Large grammar (impractical)
– Refactoring into non-terminals

• Ambiguity hard to handle optimally

[Slide 223] Tree Covering: Dynamic Programming5

• Step 1: compute cost matrix, bottom-up for all nodes
– Matrix: tree node × register bank (different patterns might yield the same result in

different register banks)
– Cost is sum of pattern and sum of children costs
– Always store cheapest rule and cost

• Step 2: walk tree top-down using rules in matrix
– Start with goal, follow rules in matrix

• Time linear w.r.t. tree size

[Slide 224] Tree Covering: Dynamic Programming – Example

+

*

a b

«

c 2

4RS Glanville and SL Graham. “A new method for compiler code generation”. In: POPL. 1978, pp. 231–
254. url: https://dl.acm.org/doi/pdf/10.1145/512760.512785.

5AV Aho, M Ganapathi, and SWK Tjiang. “Code generation using tree matching and dynamic pro-
gramming”. In: TOPLAS 11.4 (1989), pp. 491–516. url: https://dl.acm.org/doi/pdf/10.1145/
69558.75700.
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7.4 DAG Covering

Node: +
Pattern: P9: GP → +(*(GP , GP ), GP )
Pat. Cost: 3
Cost Sum: 4

Node + * « 2

GP Cost 4 3 1 1
Pattern P9 P8 P0 P10

[Slide 225] Tree Covering: Dynamic Programming – Off-line Analysis

• Cost analysis can actually be precomputed6

• Idea: annotate each node with a state based on child states
• Lookup node label from precomputed table (one per register bank)
• Significantly improves compilation time
• But: Tables can be large, need to cover all possible (sub-)trees
• Variation: dynamically compute and cache state tables7

[Slide 226] Tree Covering

+ Efficient: linear time to find local optimum
+ Better code than pure macro expansion
+ Applicable to many ISAs
− Common sub-expressions cannot be represented

– Need either edge split (prevents using complex instructions) or node duplica-
tion (redundant computation ⇒ inefficient code)

− Cannot make use of multi-output instructions (e.g., divmod)

7.4 DAG Covering

[Slide 227] DAG Covering

• Idea: lift restriction of trees, operate on data flow DAG
– Reminder: an SSA basic block already forms a DAG

• Trivial approach: split into trees :(

• Least-cost covering is NP-complete8

6A Balachandran, DM Dhamdhere, and S Biswas. “Efficient retargetable code generation using bottom-
up tree pattern matching”. In: Computer Languages 15.3 (1990), pp. 127–140.

7MA Ertl, K Casey, and D Gregg. “Fast and flexible instruction selection with on-demand tree-parsing
automata”. In: PLDI 41.6 (2006), pp. 52–60.

8DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54.
url: http://llvm.org/pubs/2008-CGO-DagISel.pdf.
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7 Instruction Selection

[Slide 228] DAG Covering: Adapting Dynamic Programming I9

• Step 1: compute cost matrix, bottom-up for all nodes
– As before; make sure to visit each node once

• Step 2: iterate over DAG top-down
– Respect that multiple roots exist: start from all roots
– Mark visited node/regbank combinations: avoid redundant emit

+ Linear time
− Generally not optimal, only for specific grammars

“Roots” in this context refers to all values that are required by other basic blocks and
therefore must be computed and stored in some register.

[Slide 229] DAG Covering: Adapting Dynamic Programming I – Example

+1

a *

b c

+2

d

Total cost: 6
madd %1, %b, %c, %a
madd %2, %b, %c, %d

Optimal cost: 5 ⇝ non-optimal result

Node +2 +1 *

GP Cost 3 3 3
Pattern P9 P9 P8

[Slide 230] DAG Covering: Adapting Dynamic Programming II10

• Step 1: compute cost matrix, bottom-up (as before)
• Step 2: iterate over DAG top-down (as before)
• Step 3: identify overlaps and check whether split is beneficial

– Mark nodes which should not be duplicated as fixed
• Step 4: as step 1, but skip patterns that include fixed nodes
• Step 5: as step 2

9MA Ertl. “Optimal code selection in DAGs”. In: POPL. 1999, pp. 242–249. url: https://dl.acm.
org/doi/pdf/10.1145/292540.292562.

10DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54.
url: http://llvm.org/pubs/2008-CGO-DagISel.pdf.
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7.5 Graph Covering

+ Probably fast? “Near-optimal”?
− Generally not optimal, superlinear time

[Slide 231] DAG Covering: ILP11

• Idea: model ISel as integer linear programming (ILP) problem
• P is set of patterns with cost and edges, V are DAG nodes
• Variables: Mp,v is 1 iff a pattern p is rooted at v

minimize
∑

p,v p.cost ·Mp,v

subject to ∀r ∈ roots.
∑

pMp,r ≥ 1

∀p, v, e ∈ p.edges(v). Mp,v −
∑

p′ Mp′,e ≤ 0

Mp,v ∈ {0, 1}

Minimize cost for all matched patterns s.t. every root has a match and every input of a match has a match.

+ Optimal result
− Practicability beyond small programs questionable (at best)

[Slide 232] DAG Covering: Greedy/Maximal Munch

• Top-down, start at roots, always take largest pattern
• Repeat for remaining roots until whole graph is covered

+ Easy to implement, reasonably fast
− Result often non-optimal

• Used by: LLVM SelectionDAG

7.5 Graph Covering

[Slide 233] Graph Covering

• Idea: lift limitation of DAGs, cover entire function graphs
• Better handling of predication and VLIW bundling

– E.g., hoisting instructions from a conditional block
• Allows to handle instructions that expand to multiple blocks

– switch, select, etc.
• May need new IR to model control flow in addition to data flow
• In practice: only used by adapting methods showed for DAGs
• Used by: Java HotSpot Server, LLVM GlobalISel (all tree-covering)

11DR Koes and SC Goldstein. “Near-optimal instruction selection on DAGs”. In: CGO. 2008, pp. 45–54.
url: http://llvm.org/pubs/2008-CGO-DagISel.pdf.
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7 Instruction Selection

7.6 ISel in Practice

[Slide 234] Flawed Assumptions

• Cost model is fundamentally flawed
⇒ “Optimal” ISel doesn’t really mean anything
• Out-of-order execution: costs are not linear

– Instructions executed in parallel, might execute for free
– Possible contention of functional units

• Register allocator will modify instructions
• “Bad” instructions boundaries increase register requirements

– More stack spilling ⇝ much slower code!

[Slide 235] Instruction Selection in Practice

• Most compilers use some form of greedy tree/DAG pattern matching
• Later stages use peephole optimizations

– Basically also tree/DAG matching on machine operations
• Distinction between tree/DAG/graph matching somewhat artificial12

Problem in practice: implementing the huge amount of required patterns
• LLVM X86 back-end has 60k lines C++ for lowering + auto-generated patterns
• Needs lots of handling for corner cases, e.g. immediates
• Coming up with the patterns is often non-trivial

To illustrate the last point: x86 has no instruction to reverse bits of an integer.
However, with the GFNI extension, the instruction vgf2p8affineqb was introduced,
which can be configured in a way that it performs a bit-reverse operationa. (Would
you come up with this pattern?)
ahttps://github.com/llvm/llvm-project/pull/81764

7.7 LLVM Instruction Selection

[Slide 236] LLVM Back-end: Overview

• LLVM-IR → Machine IR: instruction selection + scheduling
– MIR is SSA-representation of target instructions
– Selectors: SelectionDAG, FastISel, GlobalISel
– Also selects register bank (GP/FP/...) – required for instruction
– Annotates registers: calling convention, encoding restrictions, etc.

• MIR: minor (peephole) optimizations
• MIR: register allocation
• MIR: prolog/epilog insertion (stack frame, callee-saved regs, etc.)
• MIR → MC: translation to machine code

12My personal opinion.
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7.7 LLVM Instruction Selection

[Slide 237] LLVM MIR Example

define i64 @fn(i64 %a,i64 %b,i64 %c) {
%shl = shl i64 %c, 2
%mul = mul i64 %a, %b
%add = add i64 %mul, %shl
ret i64 %add

}
# YAML with name, registers, frame info
body: |
bb.0 (%ir-block.0):
liveins: $x0, $x1, $x2

%2:gpr64 = COPY $x2
%1:gpr64 = COPY $x1
%0:gpr64 = COPY $x0
%3:gpr64 = MADDXrrr %0, %1, $xzr
%4:gpr64 = ADDXrs killed %3, %2, 2
$x0 = COPY %4
RET_ReallyLR implicit $x0

llc -march=aarch64 -stop-after=finalize-isel

[Slide 238] LLVM MIR Example

In-Class Exercise:

Analyze the Machine IR of the following code. (Also consult the referencea.)
• What is the difference between physical and virtual registers?
• What do killed and implicit-def mean?
• How do branches differ from branches in LLVM-IR?

// clang --target=aarch64 -c -mllvm -stop-after=finalize-isel -O1 -o -
int foo(int n) {
int r = 1;
while (n) { r *= n << n; n--; }
return r;

}

Also try -O0, -O2, -g, and –target=x86_64.
ahttps://llvm.org/docs/MIRLangRef.html

[Slide 239] LLVM: Instruction Selectors

FastISel

• Uses macro expansion
• Low compile-time
• Code quality poor
• Only common cases
• Otherwise: fallback to SelectionDAG
• Default for -O0

SelectionDAG
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7 Instruction Selection

• Converts each block into separate DAGs
• Greedy tree matching
• Slow, but good code
• Handles all cases
• No cross-block opt. (done in DAG building)
• Default

GlobalISel

• Conv. to generic-MIR then legalize to MIR
• Reuses SD patterns
• Faster than SelDAG
• Few architectures
• Handles many cases, SelDAG-fallback
• Default AArch64 -O0

[Slide 240] LLVM SelectionDAG: IR to ISelDAG

• Construct DAG for basic block
– EntryToken as ordering chain

• Legalize data types
– Integers: promote or expand into multiple
– Vectors: widen or split (or scalarize)

• Legalize operations
– E.g., conditional move, etc.

• Optimize DAG, e.g. some pattern matching, removing unneeded sign/zero exten-
sions

See Figure 7.1.
llc -march=aarch64 -view-isel-dags

Note: needs LLVM debug build

[Slide 241] LLVM SelectionDAG: ISelDAG to DAG

• Mainly pattern matching
• Simple patterns specified in TableGen

– Matching/selection compiled into bytecode
– SelectionDAGISel::SelectCodeCommon()

• Complex selections done in C++
• Scheduling: linearization of graph

See Figure 7.2.
llc -march=aarch64 -view-sched-dagsNote: needs LLVM debug build

[Slide 242] Instruction Selection – Summary

• Instruction Selection: transform generic into arch-specific instructions

80



7.7 LLVM Instruction Selection

isel input for fn:

EntryToken

t0

ch

Register %0

t1

i64

Register %1

t3

i64

Register %2

t5

i64

Constant<2>

t7

i64

Register $x0

t11

i64

0 1

CopyFromReg

t2

i64 ch

0 1

CopyFromReg

t4

i64 ch

0 1

CopyFromReg

t6

i64 ch

0 1

mul

t9

i64

0 1

shl

t8

i64

0 1

add

t10

i64

0 1 2

CopyToReg

t12

ch glue

0 1 2

AArch64ISD::RET_FLAG

t13

ch

GraphRoot

Figure 7.1: ISel DAG right before instruction selection.
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7 Instruction Selection

scheduler input for fn:

EntryToken

t0

ch

Register %0

t1

i64

Register %1

t3

i64

Register %2

t5

i64

Register $x0

t11

i64

0 1

CopyFromReg

t2

i64 ch

0 1

CopyFromReg

t4

i64 ch

0 1

CopyFromReg

t6

i64 ch

0 1 2

MADDXrrr

t9

i64

Register $xzr

t15

i64

0 1 2

ADDXrs

t10

i64

TargetConstant<2>

t14

i32

0 1 2

CopyToReg

t12

ch glue

0 1 2

RET_ReallyLR

t13

ch

GraphRoot

Figure 7.2: X86 DAG after Instruction Selection
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7.7 LLVM Instruction Selection

• Often focus on optimizing tiling costs
• Target instructions often more complex, e.g., multi-result
• Macro Expansion: simple, fast, but inefficient code
• Peephole optimization on sequences/trees to optimize
• Tree Covering: allows for better tiling of instructions
• DAG Covering: support for multi-res instrs., but NP-complete
• Graph Covering: mightiest, but also most complex, rarely used

[Slide 243] Instruction Selection – Questions

• What is the (nowadays typical) input and output IR for ISel?
• Why is good instruction selection important for performance?
• Why is peephole optimization beneficial for nearly all ISel approaches?
• How can peephole opt. be done more effectively than on neighboring instrs.?
• What are options to transform an SSA-IR into data flow trees?
• Why is a greedy strategy not optimal for tree pattern matching?
• When is DAG covering beneficial over tree covering?
• Which ISel strategies does LLVM implement? Why?
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8 Register Allocation

[Slide 245] Register Allocation

• Map unlimited/virtual registers to limited/architectural registers
• Assign a register to every value

– Outputs get a (new) register, input operands often require registers
• When running out of registers, move values to stack

– Stack spilling – save value register from to stack memory
• ϕ-nodes: ensure all inputs are assigned to same location
• Goal: produce correct code, minimize extra load/stores

– Regalloc affects performance in orders of magnitude

[Slide 246] Register Allocation: Overview Example

gauss(%0) {
%2 = SUBXri %0, 1
%3 = MADDXrrr %0, %2, 0
%4 = MOVXconst 2
%5 = SDIVrr %3, %4
ret %5

}
gauss(%0 : X0) {
%2 = SUBXri %0, 1 : X1
%3 = MADDXrrr %0, %2, 0 : X0
%4 = MOVXconst 2 : X1
%5 = SDIVrr %3, %4 : X0
ret %5

}

• May also insert copy and stack spilling instructions

8.1 Avoiding Register Allocation

[Slide 247] Simplest thing that could possibly work

• Idea: allocate a one stack slot for every SSA variable/argument

• Load all instruction operands into registers right before
• Perform instruction
• Write result back to stack slot for that SSA variable

+ Simple, always works, debugging easy
− Extremely inefficient in time and space
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8 Register Allocation

[Slide 248] Regalloc Example 1

gauss(%0)
%2 = SUBXri %0, 1
%3 = MADDXrrr %0, %2, 0
%4 = MOVXconst 2
%5 = SDIVrr %3, %4
ret %5

gauss(%0 : X0)
%spills = alloca 40
STRXi %0, %spills, 0
%l0 = LDRXi %spills, 0 : X0
%2 = SUBXri %0%l0, 1 : X0
STRXi %2, %spills, 8
%l1 = LDRXi %spills, 0 : X0
%l2 = LDRXi %spills, 8 : X1
%3 = MADDXrrr %l1, %l2, 0 : X0
STRXi %3, %spills, 16
%4 = MOVXconst 2 : X0
STRXi %4,i %spills, 24
%l3 = LDRXi %spills, 16 : X0
%l4 = LDRXi %spills, 24 : X1
%5 = SDIVrr %l3, %l4 : X0
STRXi %5, %spills, 32
%l5 = LDRXi %spills, 32 : X0
ret %l5

8.2 Handling PHI Nodes

[Slide 249] Handling PHI Nodes

• ϕ-node needs to become register or stack slot
– Simplest thing that could possibly work: PHI becomes stack slot

• Remember: ϕ-nodes are executed on the edge
• Idea: predecessors write their value to that location at the end

– First pass: define/allocate storage for ϕ-node, but ignore inputs
– Second pass: insert move operations at end of predecessors

[Slide 250] Regalloc Example 2

identity(%0)
br %2

2:
%3 = phi [ 0, %1 ], [ %4, %2 ]
%4 = ADDXri %3, 1
%5 = CMPXrr_BLS %4, %0
br %5, %2, %6

6:
ret %3
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8.2 Handling PHI Nodes

Pass 12

• Original value lost in %6!

identity(%0 : X0)
%spills = alloca 24
STRXi %0, %spills, 0
%c0 = MOVXconst 0 : X0
STRXi %c, %spills, 8
br %2

2:%3 = phi [ 0, %1 ], [ %4, %2 ]
%l0 = LDRXi %spills, 8 : X0
%4 = ADDXri %l0, 1 : X0
STRXi %4, %spills, 16
%l4 = LDRXi %spills, 16 : X0
STRXi %l4, %spills, 8
%l1 = LDRXi %spills, 16 : X0
%l2 = LDRXi %spills, 0 : X1
%5 = CMPXrr_BLS %l1, %l2
br %5, %2, %6

6:%l3 = LDRXi %spills, 8 : X0
ret %l3

[Slide 251] Critical Edges

• Critical edge: edge from block with mult. succs. to block with mult. preds.
• Problem: cannot place move on such edges

– When placing in predecessor, they would also execute for other successor ⇒
unnecessary and – worse – incorrect

→ →

• Break critical edges: insert an empty block

[Slide 252] Regalloc Example 2 – Attempt 2identity(%0)
br %2

2:
%3 = phi [ 0, %1 ], [ %4, %6 ]
%4 = ADDXri %3, 1
%5 = CMPXrr_BLS %4, %0
br %5, %6, %7

6:
br %2

7:
ret %3

Pass 12
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8 Register Allocation

identity(%0 : X0)
%spills = alloca 24
STRXi %0, %spills, 0
%c0 = MOVXconst 0 : X0
STRXi %c, %spills, 8
br %2

2:%3 = phi [ 0, %1 ], [ %4, %6 ]
%l0 = LDRXi %spills, 8 : X0
%4 = ADDXri %l0, 1 : X0
STRXi %4, %spills, 16
%l1 = LDRXi %spills, 16 : X0
%l2 = LDRXi %spills, 0 : X1
%5 = CMPXrr_BLS %l1, %l2
br %5, %6, %7

6:%l4 = LDRXi %spills, 16 : X0
STRXi %l4, %spills, 8
br %2

7:%l3 = LDRXi %spills, 8 : X0
ret %l3

[Slide 253] Handling Critical Edges

Breaking Edges
• Insert new block for moves
+ Simple, no analyses needed
− Bad performance in loops

r1 ← 0

r2 ← r1 + 1 r1 ← r2

r3 ← r1 + x

Copy Used Values
• Move values still used to new reg.
+ Performance might be better
− Needs more registers

r1 ← 0

r2 ← r1 + 1
rT ← r1 r1
← r2

r3 ← rT + x

[Slide 254] Regalloc Example 3odd(%0)
br %2

2:
%3 = phi [ %0, %1 ], [ %8, %7 ]
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8.2 Handling PHI Nodes

%4 = phi [ 1, %1 ], [ %5, %7 ]
%5 = phi [ 0, %1 ], [ %4, %7 ]
%6 = CBNZX(%3)
br %6, %7, %9

7:
%8 = SUBXri %3, 1
br %2

9:
ret %4

• Value of ϕ node lost!

odd(%0 : X0)
%spills = alloca 40
STRXi %0, %spills, 0
%l3 = LDRXi %spills, 0 : X0; STRXi %l3, %spills, 8
%c0 = MOVXconst 1 : X0; STRXi %c0, %spills, 16
%c1 = MOVXconst 0 : X0; STRXi %c1, %spills, 16
br %2

2:%3 = phi [ %0, %1 ], [ %8, %7 ] // spills+8
%4 = phi [ 1, %1 ], [ %5, %7 ] // spills+16
%5 = phi [ 0, %1 ], [ %4, %7 ] // spills+24
%l0 = LDRXi %spills, 8 : X0
%6 = CBNZX(%l0)
br %6, %7, %9

7:%l1 = LDRXi %spills, 8 : X0
%8 = SUBXri %l2, 1 : X0; STRXi %8, %spills, 32
%l4 = LDRXi %spills, 40 : X0; STRXi %l4, %spills, 8
%l5 = LDRXi %spills, 24 : X0; STRXi %l5, %spills, 16
%l6 = LDRXi %spills, 16 : X0; STRXi %l6, %spills, 24
br %2

9:%l2 = LDRXi %spills, 24 : X0
ret %l2

[Slide 255] PHI Cycles

• Problem: ϕ-nodes can depend on each other
• Can be chains (ordering matters) or cycles (need to be broken)
• Note: only ϕ-nodes defined in same block are relevant/problematic

ϕ1 ϕ2 ϕ3

ϕ1 ϕ2

ϕ3ϕ4

ϕ1 ϕ2

ϕ3ϕ4

ϕ1 = ϕ(ϕ2, . . . )
ϕ2 = ϕ(ϕ3, . . . )
ϕ3 = ϕ(v, . . . )

ϕ1 = ϕ(ϕ2, . . . )
ϕ2 = ϕ(ϕ3, . . . )
ϕ3 = ϕ(ϕ4, . . . )
ϕ4 = ϕ(ϕ1, . . . )
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8 Register Allocation

ϕ1 = ϕ(ϕ2, . . . )
ϕ2 = ϕ(ϕ3, . . . )
ϕ3 = ϕ(ϕ1, . . . )
ϕ4 = ϕ(ϕ1, . . . )

[Slide 256] Handling PHI Cycles

1. Compute number of other ϕ nodes reading other ϕ on same edge

2. For each ϕ with 0 readers: handle node/chain

• No readers ⇝ start of chain
• Handling node may unblock next element in chain

3. For all remaining ϕ-nodes: must be cycles, reader count always 1

• Choose arbitrary node, load to temporary register, unblock value
• Handle just-created chain
• Write temporary register to target

Resolving ϕ cycles requires an extra register (or stack slot)

[Slide 257] Regalloc Example 3 – Attempt 2

Edge %1 → %2 Edge %7 → %2
Critical ϕ:
• %4 #readers: 10 – broken
• %5 #readers: 10

Action: break %4

odd(%0 : X0)
%spills = alloca 40
STRXi %0, %spills, 0
%l3 = LDRXi %spills, 0 : X0; STRXi %l3, %spills, 8
%c0 = MOVXconst 1 : X0; STRXi %c0, %spills, 16
%c1 = MOVXconst 0 : X0; STRXi %c1, %spills, 16
br %2

2:%3 = phi [ %0, %1 ], [ %8, %7 ] // spills+8
%4 = phi [ 1, %1 ], [ %5, %7 ] // spills+16
%5 = phi [ 0, %1 ], [ %4, %7 ] // spills+24
%l0 = LDRXi %spills, 8 : X0
%6 = CBNZX(%l0)
br %6, %7, %9

7:%l1 = LDRXi %spills, 8 : X0
%8 = SUBXri %l2, 1 : X0; STRXi %8, %spills, 32
%l4 = LDRXi %spills, 40 : X0; STRXi %l4, %spills, 8
%l5 = LDRXi %spills, 24 : X1
%l6 = LDRXi %spills, 16 : X0; STRXi %l6, %spills, 24
STRXi %l5, %spills, 16
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br %2
9:%l2 = LDRXi %spills, 24 : X0

ret %l2

[Slide 258] SSA Destruction

In-Class Exercise:
fn(%0, %1) {
b1:

%2 = add %0, %1
br %b2

b2:
%3 = phi [%b1: %1], [%b3: %4]
%4 = phi [%b1: %0], [%b3: %3]
%5 = phi [%b1: %2], [%b3: %3]
%6 = phi [%b1: 0], [%b3: %8]
%7 = icmp lt %3, %6
br %7, %b3, %b4

b3:
%8 = add %6, 1
%9 = icmp gt %8, %1
br %9, %b4, %b2

b4:
%10 = phi [%b2: %4], [%b3, %3]
%11 = phi [%b2: %5], [%b3, %8]
%12 = add %10, %11
ret %12

}

1. Dependencies between ϕ-nodes?

2. Critical Edges? (Draw CFG)

3. Destruct SSA into form with unlimited registers.

a) ... by breaking critical edges

b) ... by copying used values

8.3 Better Register Allocation

[Slide 259] Better Register Allocation

• Goal: keep as many values in registers as possible
– Less stack spilling ⇒ better performance

• Problem: register count (severely) limited
⇝ Are there enough registers? (otherwise: spilling)
⇝ Which register to choose?
⇝ Which register to kill and put on the stack?
• Needs information when value is actually needed
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8 Register Allocation

[Slide 260] Interlude: Register Allocation Research – Executive Summary

• Tons of papers exist
• Papers often skip over important details

– E.g., when spilling – using the value needs another register
– E.g., temporary register for shuffling values

• Additional (ISA) constraints in practice: (incomplete list)

– 2-address instructions with destructive source
– Fixed registers for specific instructions
– Computing the stack address may need yet another register
– Different register classes, often just handled independently

• Implementations even of simple algorithms tend to be large and complex

[Slide 261] Liveness Analysis – Definitions

• Live: value still used afterwards
– After last (possible) use in program flow, the value becomes dead

• Live ranges: set of ranges in program where value is live
– Not necessarily contiguous, e.g. in case of branches

• Live interval: over-approximation of live ranges without holes
– Depends on block order, reverse post-order often a good choice

• Live-in/Live-out : values live at begin/end of basic block
– For ϕ nodes: ϕ is live-in, operands are live-out in predecessors (Note: different

literature uses different definitions)

[Slide 262] Liveness Analysis – Example

a = ...
b = ...
c = ...
if (...)

d1 = a + 1 d2 = a + b

d = ϕ(d1, d2)

return c + d

a
b
c

d1 d2

d

live-in: ∅

live-out: a, b, c

live-in: a, c
live-out: c, d1

live-in: a, b, c
live-out: c, d2

live-in: c, d

live-out: ∅
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8.3 Better Register Allocation

[Slide 263] Liveness Analysis – Example – Live Ranges vs. Live Intervals

a = ...
b = ...
c = ...
if (...)

d1 = a + 1 d2 = a + b

d = ϕ(d1, d2)

return c + d

a
b
c

d1 d2

d

a = ...
b = ...
c = ...
if (...)
d1 = a + 1
goto ...

d2 = a + b
goto ...

d = ϕ(d1, d2)

return c + d

a
b
c

d1

d2

d

• Live intervals are substantially worse, but easier to compute

[Slide 264] Liveness Analysis – Algorithm1

• Iterate over blocks in post-order
– live← ∪s.liveIn \ s.phis, s ∈ b.successors
– live← live ∪ {ϕ.input(b)|ϕ ∈ b.successors.phis}
– b.liveOut← live
– ∀v ∈ live : ranges[v].add(b.start, b.end)
– For each non-ϕ instruction inst in reverse order

∗ live← (live ∪ inst.ops) \ {inst}
∗ ranges[inst].setStart(inst)
∗ ∀op ∈ inst.ops : ranges[op].add(b.start, inst)

– b.liveIn← live ∪ b.phis

• Repeat until convergence2

1Adapted from C Wimmer and M Franz. “Linear scan register allocation on SSA form”. In: CGO. 2010,
pp. 170–179.

2Reducible graphs: expanding liveIn of loop headers to the entire loop suffices
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8 Register Allocation

[Slide 265] Liveness Analysis – Example

a1 = ...

b1 = ...
c = ...

a2 = ϕ(a1, a3)

b2 = ϕ(b1, b3)

if (b2 < c)

a3 = a2 + b2

b3 = b2 + 1

return a2

[Slide 266] Liveness Analysis – Example

In-Class Exercise:
fn(%0, %1) {
b1:

%2 = add %0, %1
br %b2

b2:
%3 = phi [%b1: %1], [%b3: %4]
%4 = phi [%b1: %0], [%b3: %3]
%5 = phi [%b1: %2], [%b3: %3]
%6 = phi [%b1: 0], [%b3: %8]
%7 = icmp lt %3, %6
br %7, %b3, %b4

b3:
%8 = add %6, 1
%9 = icmp gt %8, %1
br %9, %b4, %b2

b4:
%10 = phi [%b2: %4], [%b3, %3]
%11 = phi [%b2: %5], [%b3, %8]
%12 = add %10, %11
%13 = add %12, %2
ret %13

}

1. Compute live ranges of every SSA value

[Slide 267] Register Allocation Decisions (Outline)

• Question: are there enough registers for all values?
– Register pressure = number of values live at some point
– Register pressure > #registers ⇒ move some values to stack (spilling)

• Question: when spilling, which values and where to store/reload?
– Spilling is expensive, so avoid spilling frequently used values
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8.3 Better Register Allocation

• Question: for unspilled values, which register to assign?
– Also: respect register constraints, etc.

[Slide 268] Register Allocation Strategies

Scan-based

• Iterate over the program
• Decide locally what to do
• Greedily assign registers

Graph-based

• Compute interference graph
– Nodes are values
– Edge ⇒ live ranges overlap

• Holistic approach

+ Fast, good for straight code
− Code quality often bad
• Used for -O0 and JIT comp.

+ Often generate good code
− Expensive, superlinear run-time
• Used for optimized code

[Slide 269] Linear Scan Register Allocation3

• Idea: treat whole function as single block
– Block order affects quality (but not correctness)
– Only consider live intervals without holes

• Iterate over instructions from top to bottom
• For operands of instruction in their last use: mark register as free
• Assign instruction result to new free register

– If no free register available: move some value to the stack
– Heuristic: value whose liveness ends furthest in future

[Slide 270] Linear Scan Register Allocation

+ low compile-time, simple
− very suboptimal code, live intervals grossly over-approximated
• What’s missing?

– Registers to load spilled values
– Shuffling of values between blocks

3M Poletto and V Sarkar. “Linear scan register allocation”. In: TOPLAS 21.5 (1999), pp. 895–913.
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8 Register Allocation

– Register constraints (e.g., for instructions or function calls)
• Other disadvantage: once a value is spilled, it is spilled everywhere

– Some other approaches based on lifetime splitting4

• Function calls: clobber lots of registers

[Slide 271] Scan-based Register Allocation5

Iterate over basic blocks6

• Start with register assignment from predecessor
– Multiple predecessors: choose assignment from any one
– ϕ-nodes can either reside in registers or on the stack

• Iterate over instructions top-down
– Ensure all instruction operands are in registers

∗ When out of registers: move any value to stack
– For operands in their last use: mark register as free
– Assign instruction result to new free register

• Shuffle values back into registers where successor expects them7

[Slide 272] Scan-based Register Allocation – Spilling

What to spill?
• Spill value with furthest use in future8

– Frees register for longest time
– Requires information on next use to be stored during analysis
– But: avoid spilling values computed inside loops (esp. loop-carried dependen-

cies), reloads are fine9

– Downside: superlinear run-time
Where to store?

• Stack, period.
• Spilling to FP/vector registers. . . occasionally proposed, not used in practice

[Slide 273] Scan-based Register Allocation – Spilling

Where to insert store?
4O Traub, G Holloway, and MD Smith. “Quality and speed in linear-scan register allocation”. In:

SIGPLAN 33.5 (1998), pp. 142–151. url: https://dl.acm.org/doi/pdf/10.1145/277652.277714.
5Mostly following Go: https://github.com/golang/go/blob/5f7abe/src/cmd/compile/internal/
ssa/regalloc.go

6Typically: reverse post-order, so most predecessors are seen before successors, except for loops.
7Without critical edges, only relevant for blocks with one successor — others are visited afterwards by

RPO definition.
8C Wimmer and H Mössenböck. “Optimized interval splitting in a linear scan register allocator”. In:

VEE. 2005, pp. 132–141.
9Intel Optimization Reference Manual (Aug. 2023), Assembly/Compiler Coding Rules 38 and 45
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8.4 Generating Assembly

• Option 1: spill exactly where required
– Downside: multiple spills of same value, many reloads

• Option 2: spill once, immediately after computation
– Later “spills” to the stack are less costly
– May lead to spills on code paths that don’t need it

• Option 3: compute best place using dominator tree
– Spill store must dominate all subsequent loads

[Slide 274] Scan-based Register Allocation – Register Assignment

• Merge blocks: choose predecessor with most values in registers
– High likelihood of reducing the number of stores
– Re-loads are pushed into predecessors

• Propagate register constraints bottom-up as hints first
– E.g.: call parameters, instruction constraints, assignment for merge block
– Reduces number of moves

[Slide 275] Graph Coloring Approaches

+ Considerably better results than greedy algorithms
− High run-time, even with heuristics
• Graph coloring in general is NP-complete
• Often used in compilers (e.g., GCC, WebKit)

AD IN2053 “Program Optimization” covers this more formally

8.4 Generating Assembly

[Slide 276] Stack Frame Allocation

• Optionally setup frame pointer
– Required for variably-sized stack frame Otherwise: cannot access spilled vari-

ables or stack parameters
• Optionally re-align stack pointer
• Save callee-saved registers, maybe also link register
• Optionally add code for stack canary
• Compute stack frame size and adjust stack pointer

– Mainly size of allocas, but needs to respect alignment
– Ensure sufficient space for parameters passed on the stack
– Ensure stack pointer is sufficiently aligned

• Stack pointer adjustment may be omitted for leaf functions
– Some ABIs guarantee a red zone
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8 Register Allocation

[Slide 277] Block Ordering

• Order blocks to make use of fall-through in machine code
• Avoid sequences of b.cond; b

– Sometimes cannot be avoided: conditional branches often have shorter range
• Block ordering has implications for branch prediction

– Forward branches default to not-taken, backward taken
– Unlikely blocks placed “out of the way” of the main execution path
– Indirect branches are predicted as fall-through

8.5 Summary

[Slide 278] Register Allocation – Summary

• Map unlimited virtual registers to restricted register set
• Responsible for:

– Assigning registers to values
– Deciding which registers to spill to stack
– Deciding when to spill/unspill values

• ϕ-nodes require extra care, esp. for chains and cycles
• Liveness information is key information for register allocation
• Scan-based approaches are fast, but lead to suboptimal code
• Graph coloring yields better results, but is much slower
• Register allocation/spilling heavily relies on heuristics in practice

[Slide 279] Register Allocation – Questions

• Why is register allocation a difficult problem?
• How are ϕ-nodes handled during register allocation?
• What are the two main problems when destructing ϕ-nodes?
• Why are critical edges problematic and how to deal with them?
• What are practical constraints for register allocation?
• How to detect whether a value is still needed at some point?
• How to compute the live ranges of values in an SSA-based IR?
• What is the idea of linear scan and what are its practical problems?

98



9 Object Files, Linker, and Loader

[Slide 281] Overview: Post-compilation

• Compiler emits object file
– Somehow? Some format?

• Linker merges object files and determines required shared libraries
– Somehow resolves missing symbols?

• Linker creates executable file
– Somehow? Some format the OS understands?

• Kernel loads executable file into memory
• Someone loads shared libraries

[Slide 282] Code Model and Position Independent Code

• Code Model = address constraints
• Allows for better code

– Long addrs/offsets = more instrs.
• Exact constraints arch/ABI-specific
• x86-64 SysV ABI:

– Small: code and data max. 2 GiB
– Medium: code max. 2 GiB
– Large: no restrictions

The small code model allows to use relative jumps/calls to other functions and rela-
tive (or 32-bit absolute, directly encodeable in memory operands) accesses to global
variables. In the medium code model, this only holds for code references, but all large
data sections need to be accessed more indirectly (on x86-64, this requires a 64-bit
move-immediate instruction). In the large code model, relative calls can no longer
be used, as the function might be more than 2 GiB away — for every function call,
the address needs to be materialized with a 64-bit move followed by an indirect call.

Some ABIs define other code models, e.g., AArch64 has a tiny code model that
restricts the code/data size of the binary to 1 MiB. This allows to use the adr in-
struction (21-bit offset) to reference global variables instead of the typical adrp/adr
pair. Additionally, conditional branches to other functions are possible in this code
model.

As a general rule of thumb: the smaller the code model, the more efficient is the
resulting code.
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9 Object Files, Linker, and Loader

• non-PIC: absolute addresses fixed at link-time
– Addrs can be encoded directly
– Sometimes slightly faster
– Not possible for shared libs

• PIC: address random at load time
– Offsets need be PC-relative
– Addresses need fixup at load time (e.g., in jump tables)

Although required for shared libraries and increasingly used for binaries as a security
measure, position-independent code (PIC) can have a significant performance impact,
as an extra indirection step is needed whenever an absolute address is required.

Compiler needs to know code model

9.1 Object Files

[Slide 284] Executable and Linkable Format (ELF)

• Widely used format for code
– REL: relocatable/object file
– EXEC: executable (non-PIE)
– DYN: shared library/PIE
– CORE: coredump

• ELF header: general information
• Program headers: used for execution
• Section headers: used for linking

ELF Header
Program Headers

(not for REL)

.text
.rodata
.data

. . . e.g.,
symtab, debug

Section Headers
(primarily for REL)

[Slide 285] ELF Header

// from glibc’s elf.h
typedef struct {
unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
Elf64_Half e_type; /* Object file type */
Elf64_Half e_machine; /* Architecture */
Elf64_Word e_version; /* Object file version */
Elf64_Addr e_entry; /* Entry point virtual address */
Elf64_Off e_phoff; /* Program header table file offset */
Elf64_Off e_shoff; /* Section header table file offset */
Elf64_Word e_flags; /* Processor-specific flags */
Elf64_Half e_ehsize; /* ELF header size in bytes */
Elf64_Half e_phentsize; /* Program header table entry size */
Elf64_Half e_phnum; /* Program header table entry count */
Elf64_Half e_shentsize; /* Section header table entry size */
Elf64_Half e_shnum; /* Section header table entry count */
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9.1 Object Files

Elf64_Half e_shstrndx; /* Section header string table index */
} Elf64_Ehdr;

[Slide 286] ELF Sections

• Structures content of object files for linker
– Linker later merges content sections of same “type”

• Some sections have “meta” information (e.g., symbols)
• .text – program text/code, executable
• .rodata – read-only data
• .data – initialized data, writable
• .bss – zero-initialized data, no storage, writable

– Name history: block started by symbol
• .strtab – string table for symbol names
• .symtab – symbol table, references string table for names
• .shstrtab – string table for section header names

[Slide 287] ELF String Table

• Sequence of NUL-terminated character sequences
• String identified by byte offset
• Must start with a NUL byte: string 0 always empty string
• Must end with a NUL byte: all strings are terminated

Example .strtab:
\0 v a r n a m e \0 f o o \0

String 0 "" String 1 "varname" String 4 "name" String 9 "foo"

[Slide 288] ELF Section Header

typedef struct {
Elf64_Word sh_name; /* Section name (string tbl index) */
Elf64_Word sh_type; /* Section type */
// SHT_{NULL,PROGBITS,SYMTAB,STRTAB,RELA,HASH,NOBITS,...}
Elf64_Xword sh_flags; /* Section flags */
// SHF_{WRITE,ALLOC,EXECINSTR,MERGE,STRINGS,...}
Elf64_Addr sh_addr; /* Section virtual addr at execution */
Elf64_Off sh_offset; /* Section file offset */
Elf64_Xword sh_size; /* Section size in bytes */
Elf64_Word sh_link; /* Link to another section */
Elf64_Word sh_info; /* Additional section information */
Elf64_Xword sh_addralign; /* Section alignment */
Elf64_Xword sh_entsize; /* Entry size if section holds table */

} Elf64_Shdr;
// first section is always undefined/SHT_NULL

[Slide 289] Example: Section Headers
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9 Object Files, Linker, and Loader

void external(void);
static void bar(void) {}
void foo(void) { bar(); }
void func(void) {
foo(); external(); }

Section Headers:
[Nr] Name Type ES Flg Lk Inf Al
[ 0] NULL 00 0 0 0
[ 1] .text PROGBITS 00 AX 0 0 1
[ 2] .rela.text RELA 18 I 10 1 8
[ 3] .data PROGBITS 00 WA 0 0 1
[ 4] .bss NOBITS 00 WA 0 0 1
[ 5] .comment PROGBITS 01 MS 0 0 1
[ 6] .note.GNU-stack PROGBITS 00 0 0 1
[ 7] .note.gnu.property NOTE 00 A 0 0 8
[ 8] .eh_frame PROGBITS 00 A 0 0 8
[ 9] .rela.eh_frame RELA 18 I 10 8 8
[10] .symtab SYMTAB 18 11 4 8
[11] .strtab STRTAB 00 0 0 1
[12] .shstrtab STRTAB 00 0 0 1

[Slide 290] Symbol Table

• Describes symbolic reference to object/function
• Names in associated string table, referenced by byte offset
• Binding: local (static), weak, or global

typedef struct {
Elf64_Word st_name; /* Symbol name (string tbl index) */
unsigned char st_info; /* Symbol type and binding */
unsigned char st_other; /* Symbol visibility */
Elf64_Section st_shndx; /* Section index */
Elf64_Addr st_value; /* Symbol value */
Elf64_Xword st_size; /* Symbol size */

} Elf64_Sym;

Not all global variables or functions need to show up in the symbol table (e.g., global
objects with the private linkage in LLVM are omitted from the symbol tables, as
are local labels from the assembler).

[Slide 291] Example: Symbol Table

void external(void);
static void bar(void) {}
void foo(void) { bar(); }
void func(void) {
foo(); external(); }

• Ndx=UND: undefined
– value is zero

• Ndx=ABS: no section base
– value is absolute

• Ndx=num: section idx.
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9.1 Object Files

– value is offset into sec.
– later refers to address

Section Headers:
[Nr] Name Type Size ES Flg Lk Inf Al
[ 0] NULL 000000 00 0 0 0
[ 1] .text PROGBITS 00001a 00 AX 0 0 1
// ...
[10] .symtab SYMTAB 0000a8 18 11 4 8

sizeof(Elf64_Sym) ––/ | |
link to strtab –––––––––/ |

first non-local sym –––––––––––––/
[11] .strtab STRTAB 00001f 00 0 0 1
[12] .shstrtab STRTAB 00006c 00 0 0 1

Symbol table ’.symtab’ contains 7 entries:
Num: Val Size Type Bind Vis Ndx Name

0: 000 0 NOTYPE LOCAL DEFAULT UND
1: 000 0 FILE LOCAL DEFAULT ABS <stdin>
2: 000 0 SECTION LOCAL DEFAULT 1 .text
3: 000 1 FUNC LOCAL DEFAULT 1 bar
4: 001 6 FUNC GLOBAL DEFAULT 1 foo
5: 007 19 FUNC GLOBAL DEFAULT 1 func
6: 000 0 NOTYPE GLOBAL DEFAULT UND external

[Slide 292] Example: Writing Code to .text

void external(void);
static void bar(void) {}
void foo(void) { bar(); }
void func(void) {
foo(); external(); }

• Symbol may be unknown
• Linker needs to resolve offset later
⇝ Relocations

0000000000000000 <bar>:
0: c3 ret

0000000000000001 <foo>:
1: e8 fa ff ff ff call 0 <bar>
6: c3 ret

0000000000000007 <func>:
7: 48 83 ec 08 sub rsp,0x8
b: e8 00 00 00 00 call 10 <func+0x9>

c: R_X86_64_PC32a foo-0x4
10: e8 00 00 00 00 call 15 <func+0xe>

11: R_X86_64_PLT32 external-0x4
15: 48 83 c4 08 add rsp,0x8
19: c3 ret

aRecent GAS emits R_X86_64_PLT32, which is equivalent for local symbols.

[Slide 293] Relocations

• Problem: symbol values unknown before linking
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9 Object Files, Linker, and Loader

– External symbols: unavailable; other section: distance unknown
• Idea: store relocations ⇒ linker patches code/data
• Relocation: quadruple of (offset in sec., type, symbol idx, addend)
• Contained in REL/RELA/RELR sections

Static Relocation ET_REL

• For static linker (ld)
• Either: resolve or emit dyn. reloc

Dynamic Relocation ET_EXEC/ET_DYN

• For dynamic linker/loader
• Shall be fast, outside code

[Slide 294] Relocation Types

• Types and meaning defined by psABI1

P: address of place being relocated; S: symbol address; L: PLT addr. for symbol; Z: sym. size; A:
addend; B: dynamic base address of shared obj.; G: GOT offset; GOT: GOT address

Name Field Calculation

R_X86_64_64 64 S +A
R_X86_64_PC32 32 S +A− P
R_X86_64_GOT32 32 G+A
R_X86_64_PLT32 32 L+A− P
R_X86_64_GLOB_DAT addr S
R_X86_64_JUMP_SLOT addr S
R_X86_64_RELATIVE addr B +A
R_X86_64_GOTPCREL 32 G+GOT +A− P
R_X86_64_GOTPCRELX
R_X86_64_REX_GOTPCRELX

Name Field Calculation

R_X86_64_32 32 S +A (zext)
R_X86_64_32S 32 S +A (sext)
R_X86_64_GOTOFF64 64 S +A−GOT
R_X86_64_GOTPC32 32 GOT +A− P
R_X86_64_GOT64 64 G+A
R_X86_64_GOTPCREL64 64 G+GOT +A−P
R_X86_64_GOTPC64 64 GOT +A− P
R_X86_64_PLTOFF64 64 L−GOT +A
R_X86_64_SIZE32 32 Z +A
R_X86_64_SIZE64 64 Z +A

[Slide 295] Relocation Section
Section Headers:

[Nr] Name Type Size ES Flg Lk Inf Al
[ 1] .text PROGBITS 00001a 00 AX 0 0 1
[ 2] .rela.text RELA 000030 18 I 10 1 8

sizeof(Elf64_Rela) ––/ | | |
I: info is section link ––––––/ | |

link to symtab –––––––––/ |
target sec. for relocations –––––––––––––/

[10] .symtab SYMTAB 0000a8 18 11 4 8

Relocation section ’.rela.text’ at offset 0x1e0 contains 2 entries:
Offset Info Type Symbol’s Name + Addend

000000000000000c 0000000400000002 R_X86_64_PC32 foo - 4
0000000000000011 0000000600000004 R_X86_64_PLT32 external - 4

[Slide 296] Relocations on RISC Architectures

• RISC architectures typically have more relocation types
1x86-64: HJ Lu et al. System V Application Binary Interface: AMD64 Architecture Processor Supple-

ment. 2022. url: https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/
x86-64-ABI/abi.pdf?job=build.
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9.1 Object Files

– Example: AArch642 has >50 relocations
• Building a 64-bit address requires several instructions (AArch64: one for bits 0–15, 16–31,

. . . )

– Each instruction needs a different relocation to patch in the bits!

movz x0, #:abs_g0_nc:globalVariable
movk x0, #:abs_g1_nc:globalVariable
movk x0, #:abs_g2_nc:globalVariable
movk x0, #:abs_g3:globalVariable

• Often: page-granular address with added offset for low bits
– adrp for ±4 GiB range, add or load offset for low bits
– Scaled load offsets require different relocations for each scale

[Slide 297] Branch Relocations

• Branches (often) have limited range; compiler must assume max. distance
• x86-64: ±2 GiB range, if larger use mov and indirect jump
• AArch64: ±128 MiB range ⇝ executable sections must be <127 MiB linker will

insert veneer between different .text sections
– Veneer allowed to clobber inter-procedural scratch registers x16/x17

• badly designed ISA: ±1 MiB range ⇝ needs ind. jump often

[Slide 298] Branch Relocations on RISC-V

In-Class Exercise:

1. Compile the code with:
clang --target=riscv64 -c -o rv.o rv.c -falign-functions=16
int f() { return 0; }
int g() { return f(); }
int h() { return g(); }

2. Look at the relocations and disassembly: llvm-objdump -dr rv.o
How are the function calls lowered? What types of relocations are there?

3. Link the file: ld.lld -shared -o rv.so rv.o and disassemble rv.so.
What is different now?

2Arm Ltd. ELF for the Arm 64-bit Architecture (AArch64). url: https://github.com/ARM-software/
abi-aa/blob/main/aaelf64/aaelf64.rst (visited on 11/21/2022).
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9 Object Files, Linker, and Loader

9.2 Executable Files

[Slide 300] Linker3

• Goal: combine multiple input files (.o/.so/.a) into executable or shared lib.

1. Find and load all input files

2. Scan input, store symbols, resolve symbols on-the-fly

3. Create synthetic section (GOT, PLT, relocations for output file)

4. Process relocations: create PLT/GOT entry and dynamic reloc.

5. Optimize and deduplicate sections

6. Write section to output file

• Apply relocations which are now known; compress sections; etc.

7. Profit!

[Slide 301] ELF Executable File

• Entry in ELF header: entry address of the program
– Typically provided by libc to call __libc_start_main

• Program headers: instructions for loading the program
• PT_PHDR: described program headers
• PT_LOAD: loadable segment

– Specifies virtual address, file offset, file size/memory size, permission
– vaddr&(pgsize-1)==offset&(pgsize-1) – kernel will just mmap the file
– memory size > file size ⇒ filled up with zeros (for .bss)

• PT_INTERP/PT_DYNAMIC: when PIE or with shared libraries
• PT_GNU_STACK: permissions indicate whether stack is non-executable

[Slide 302] Example: Program Headers

Program Headers:
Type Offset VirtAddr FileSiz MemSiz Flg Align
LOAD 0x000000 0x00400000 0x0a0d5e 0x0a0d5e R E 0x1000
LOAD 0x0a17d8 0x004a27d8 0x005ab8 0x00b2e8 RW 0x1000

offset in file –/ | | | |
virtual address ––––––––––––/ | | |

bytes provided in file –––––––––––––––––––––/ | |
segment size in mem ––––––––––––––––––––––––––––––/ |

(memsz > filesz = zero-filled) |
mmap protection –––––––––––––––––––––––––––––––––/

// ...
GNU_STACK 0x000000 0x00000000 0x000000 0x000000 RW 0x10

3Interesting blog on LLD: F Song. Personal Blog. url: https://maskray.me/ (visited on 11/21/2022).
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9.3 Linker Optimizations

• Note: the kernel always maps full pages from the file cache
• Note: first segment includes ELF header and program headers

[Slide 303] Loading a Binary to Memory

• Load ELF header and program header
• If ET_DYN (⇝ PIE), set random base added to all addresses
• Look if PT_INTERP is present

– If present, load interpreter using same algorithm (but no nested interpreters)
• Iterate over PT_LOAD and mmap segments

– May needs zeroing of last page and mapping extra zero pages
• Setup initial stack frame and auxiliary vector (e.g., with phdr address)
• Start execution at (the interpreter’s) entry

This is the kernel’s job

9.3 Linker Optimizations

[Slide 305] Eliminating Duplicate Strings/Constants

• Sections in different object may contain same data, e.g. strings
– Critical for debug info (file names, function names, etc.)

• Idea: linker finds and deduplicates strings and other constant data
• Precondition: relative order of entries irrelevant
• SHF_MERGE – fixed-size entries, size stored in header

– Collect all entries in hash map; afterwards emit all keys
• SHF_MERGE|SHF_STRINGS – NUL-terminated strings, entsize is char width

– Precondition: strings must not contain NUL-byte
– Tail merging: foobar\0 + bar\0 ⇝ foobar\0
– Sort strings from tail (e.g., radix sort), deduplicate neighbors

[Slide 306] COMDAT Groups

In-Class Exercise:

//--- inline1.cpp
inline int x(int n) {
return n ? x(n-1) + n : 1; }

int f(int n) { return x(n); }
//--- inline2.cpp
inline int x(int n) {
return n ? x(n-1) + n : 1; }

int g(int n) { return x(n); }
int main() {}
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// clang++ -c -o inline1.o inline1.cpp
// clang++ -c -o inline2.o inline2.cpp
// clang++ -o inline.o inline{1,2}.o

1. Inspect sections and symbols of the object files with llvm-readelf -aW.

• What sections are there?
• Which symbol bindings?

2. Likewise, inspect the executable file

• How many instances of x(int) exist?

[Slide 307] Linker Garbage Collection

• Problem: objects may contain unused functions
– Compiler can’t know whether function is used

• Idea: put all function into separate sections, drop unused sections
• Sections are considered as inseparable units
• GC roots: exported symbols, init functions, . . .
• Iteratively mark all referenced sections, drop unmarked sections
• Downside: may need longer relocations ⇝ possibly less efficient code
• GCC/Clang -ffunction-sections, ld --gc-sections

[Slide 308] Identical Code Folding

• Problem: objects may contain duplicate code
– Same function compiled in many objs, e.g. template instantiation

• Idea: deduplicate read-only sections (same flags, contents, relocations(!))
• Hash all sections and their relocations, remove duplicates
• Repeat until convergence

– Only after folding foo1 and foo2, these become equivalent:
int funcA(void) { foo1(); } int funcB(void) { foo2(); }

• Caution: function pointers may be guaranteed to be different
• LLD has more aggressive deduplication

[Slide 309] Link-Time Optimization

• Problem: Compilers still suckno optimizations across object files
– Inlining, constant propagation+cloning, specialized call conv., . . .
– Optimization across language boundaries

• Idea 1: glue all source code together, compile with -fwhole-program

– Downside: single core, problematic with same-name static functions
• Idea 2: Use static binary optimization during linking (severely limited)
• Idea 3: dump IR into object, glue IR together (-flto)
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9.4 Static Libraries

– Done as very first step at link-time
• LTO is widely used and highly effective

9.4 Static Libraries

[Slide 311] Static Libraries

• Archive of relocatable object files
• Header often contains index mapping symbol to object file
• Linker takes only object files that are needed
• Code/data copied into final executable
+ Simple and fast, no ABI problems, no extra library needed at run-time
− Larger executable files, library changes need relinking

9.5 Shared Libraries

[Slide 313] Shared Libraries

• Problem: code duplication, large executables, recompile needed for changes
• Idea: share code between different executables
• Executable references functions/objects in shared library

– Shared libraries can refer to other shared libraries, too
– Linker needs to retain dynamic relocations and symbols (dynamic symbol =

externally visible symbol)
• Run-time loader links executable and libraries program start

– Find and load libraries from different paths, resolve all relocations

[Slide 314] Shared Libraries: Changes in Compiler

None :) (almost)

• When building a shared library, code must be position-independent

[Slide 315] Shared Libraries: Changes in Linker

• Relocations to symbols in shared libraries must be retained
– Store dynamic relocations and symbols in separate sections (.dynsym, .rela.dyn)

• Create table (GOT) for pointers to external function/objects
– Allocate space where loader puts addresses, add relocations
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9 Object Files, Linker, and Loader

• Create stub functions for external functions (PLT)
– Compiler still creates near call, which gets redirected to stub
– Stub jumps to address stored in table

• Emit PT_DYNAMIC segment with info for loader
– Point loader to needed libs, relocations, symtab, strtab, . . .

[Slide 316] Global Offset Table (GOT) and Procedure Linkage Table (PLT)

• Global Offset Table: pointer table filled by loader
– Linker emits dynamic relocations for GOT; loader fills addresses
– Often subject to RELRO: after relocations are applied, GOT becomes read-

only
• Procedure Linkage Table: stubs that perform jump using GOT

00401030 <func@plt>:
401030: ff 25 8a 2f 00 00 jmp QWORD PTR [rip+0x2f8a] # GOT slot

• PLT can be disabled (-fno-plt): indirect jump is duplicated
– Compiler emits indirect calls/jumps instead of near calls to PLT
– Linker cannot convert into near jump if target is in same DSO

[Slide 317] PT_DYNAMIC segment

• Loader needs to know needed libraries, flags, locations of relocations, etc.
– Sections headers might be unavailable and more info is needed

• Info for loader stored in dynamic section

Type Name/Value
(NEEDED) Shared library: [libm.so.6]
(NEEDED) Shared library: [libc.so.6]
(GNU_HASH) 0x4003c0
(STRTAB) 0x4004b8
(SYMTAB) 0x4003e0
(STRSZ) 259 (bytes)
(SYMENT) 24 (bytes)
// ...
(NULL) 0x0

[Slide 318] Symbol Lookup

• Symbol lookup using linear search + strcmp is slow
• Idea: linker creates hash table

– Hash symbol names and store them in hash table
– Dynamic symbols grouped by hash bucket
– Additional bloom filter to avoid useless walks for absent symbols

• Lookup:
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9.5 Shared Libraries

– Compute hash of target symbol string
– Check bloom filter, if absent: abort
– Iterate through symbols in bucket, compare names (and version)

• Documentation unfortunately sparse4

[Slide 319] Miscellaneous Things

• Purpose of all these dynamic entries
• Symbols: versioning and visibility
• Thread-local storage
• Constructors/destructors: called at load/unload of DSO
• Indirect functions (ifunc)

– Function to dynamically determine actual address of symbol
– Used e.g. for determining memcpy variant based on CPU features

• Dynamic loading of DSOs (dlopen)

[Slide 320] Object Files, Linker, and Loader – Summary

• Compiler needs to know code model to emit proper asm code/relocations
• ELF format used for relocatable files, executables and shared libraries
• ELF relocatables structured in sections and have static relocations
• ELF dynamic executables grouped in segments and have dynamic relocations

– Need dynamic loader to resolve dynamic relocations and shared libraries
• Linker combines relocatable files into executables or shared libraries
• Linker can perform further optimizations

[Slide 321] Object Files, Linker, and Loader – Questions

• Which ELF file types exist? What is different?
• What are typical sections found in an ELF relocatable file?
• What information is contained in a symbol table?
• What information is required for a relocation?
• What are typical differences between static and dynamic relocations?
• Which steps and possible optimization does a linker perform?
• How does the OS load a binary into memory?
• What is the difference between static and shared libraries?
• How are symbols from other shared libraries resolved?

4A Roenky. ELF: better symbol lookup via DT_GNU_HASH. url: https://flapenguin.me/elf-dt-
gnu-hash (visited on 12/14/2022)
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10 Unwinding and Debuginfo

[Slide 323] Motivation: Meta-Information on Program

• Machine code suffices for execution → not true
• Needs program headers and entry point
• Linking with shared libraries needs dynamic symbols and interpreter
• Stack unwinding needs information about the stack

– Size of each stack frame, destructors to be called, etc.
– Vital for C++ exceptions, even for non-C++ code

• Stack traces require stack information to find return addresses
– Use cases: coredumps, debuggers, profilers

• Debugging experience enhanced by variables, files, lines, statements, etc.

[Slide 324] Adding Meta-Information with GCC

-g -fexceptions -fasynchronous-unwind-tables

• -g supports different formats and levels (and GNU extensions)
• Exceptions must work without debuginfo
• Unwinding through code without exception-support must work

10.1 Stack Unwinding

[Slide 325] Stack Unwinding

• Needed for exceptions (_Unwind_RaiseException) or forced unwinding
• Search phase: walk through the stack, check whether to stop at each frame

– May depend on exception type, ask personality function
– Personality function needs extra language-specific data
– Stop once an exception handler is found

• Cleanup phase: walk again, do cleanup and stop at handler
– Personality function indicates whether handler needs to be called
– Can be for exception handler or for calling destructors
– If yes: personality function sets up registers/sp/pc for landing pad
– Non-matching handler or destructor-only: landing pad calls _Unwind_Resume

113



10 Unwinding and Debuginfo

The two-phase separation is not strictly necessary for languages like C++. A primary
benefit is that the cleanup can be avoided if no handler is found, in which case
the program can abort directly. Another benefit is that the separation allows for
resumptive exceptions handling, i.e. where the error condition is corrected and the
program resumes at the point where the exception was raised.

Language-specific data gives the personality function information about the struc-
ture of the function, the location of exception handlers, and the types of handled
exceptions. Note that in C++ exception handlers not just correspond to catch han-
dlers, but also to destructors that need to be executed during unwinding.

Forced unwinding is slightly different and skips the search phase.

[Slide 326] Stack Unwinding: Requirements

• Given: current register values in unwind function
• Need: iterate through stack frames

– Get address of function of the stack frame
– Get pc and sp for this function
– Find personality function and language-specific data
– Maybe get some registers from the stack frame
– Update some registers with exception data

[Slide 327] Stack Unwinding: setjmp/longjmp

• Simple idea – all functions that run code during unwinding do:
– Register their handler at function entry
– Deregister their handler at function exit

• Personality function sets jmpbuf to landing pad
• Unwinder does longjmp
+ Needs no extra information
− High overhead in non-exceptional case

[Slide 328] Stack Unwinding: Frame Pointer

• Frame pointers allow for fast unwinding
• fp points to stored caller’s fp
• Return address stored adjacent to frame pointer
+ Fast and simple, also without exception
− Not all programs have frame pointers

– Overhead of creating full stack frame
– Causes loss of one register (esp. x86)

− Not generally possible to restore callee-saved registers
• Still needs to find meta-information

x86_64:
push rbp
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10.2 Call Frame Information

mov rbp, rsp
// ...
mov rsp, rbp
pop rbp
ret

aarch64:
stp x29, x30, [sp, -32]!
mov x29, sp
// ...
ldp x29, x30, [sp], 32
ret

[Slide 329] Stack Unwinding: Without Frame Pointer

• Definition: canonical frame address (CFA) is sp at the function call

For x86-64, where call modifies the frame pointer, this refers to the rsp before
the call, so that the return address is stored at the address CFA− 8.

• Given: pc and sp (bottom of stack frame/call frame)
– In parent frames: retaddr − 1 ∼pc and CFA ∼sp

We cannot take retaddr as previous program counter: at that point, the
stack frame might have a different layout, e.g. for ABIs where the callee is
responsible for removing stack arguments or in case of a noreturn function.
It is a safe assumption that every call instruction has a size of at least one
byte.

• Need to map pc to stack frame size
– sp+framesize = CFA
– Stack frame size varies throughout function, e.g. prologue, stack arguments

• Case 1: some register used as frame pointer – CFA constant offset to fp

– E.g., for variable stack frame size, stack realignment on function entry
• Case 2: no frame pointer: CFA is constant offset to sp
⇝ Unwinding must restore register values

– Other reg. can act as frame pointer, register saved in other register, . . .
– Need to know where return address is stored

10.2 Call Frame Information

[Slide 330] Call Frame Information

• Table mapping each instr. to info about registers and CFA
• CFA: register with signed offset (or arbitrary expression)

• Register:
– Undefined – unrecoverable (default for caller-saved reg)
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10 Unwinding and Debuginfo

– Same – unmodified (default for callee-saved reg)
– Offset(N) – stored at address CFA+N
– Register(reg) – stored in other register
– or arbitrary expressions

[Slide 331] Call Frame Information – Example 1

CFA rip rbx rbp . . .

foo:
0x0: push rbx rsp+0x08 [CFA-0x08] same same
0x1: mov ebx, edi rsp+0x10 [CFA-0x08] [CFA-0x10] same
0x3: call bar rsp+0x10 [CFA-0x08] [CFA-0x10] same
0x8: mov eax, ebx rsp+0x10 [CFA-0x08] [CFA-0x10] same
0xa: pop rbx rsp+0x10 [CFA-0x08] [CFA-0x10] same
0xb: ret rsp+0x08 [CFA-0x08] same same

[Slide 332] Call Frame Information – Example 2

CFA rip rbx rbp . . .

foo:
0x0: push rbp rsp+0x08 [CFA-0x08] same same
0x1: mov rbp, rsp rsp+0x10 [CFA-0x08] same [CFA-0x10]
0x4: shl rdi, 4 rbp+0x10 [CFA-0x08] same [CFA-0x10]
0x8: sub rsp, rdi rbp+0x10 [CFA-0x08] same [CFA-0x10]
0xb: mov rdi, rsp rbp+0x10 [CFA-0x08] same [CFA-0x10]
0xe: call bar rbp+0x10 [CFA-0x08] same [CFA-0x10]

0x13: leave rbp+0x10 [CFA-0x08] same [CFA-0x10]
0x14: ret rsp+0x08 [CFA-0x08] same same

[Slide 333] Call Frame Information – Example 3

CFA rip rbx rbp . . .

foo:
0x0: sub rsp, 8 rsp+0x08 [CFA-0x08] same same
0x4: test edi, edi rsp+0x10 [CFA-0x08] same same
0x6: js 0x12 rsp+0x10 [CFA-0x08] same same
0x8: call positive rsp+0x10 [CFA-0x08] same same
0xd: add rsp, 8 rsp+0x10 [CFA-0x08] same same

0x11: ret rsp+0x08 [CFA-0x08] same same
0x12: call negative rsp+0x10 [CFA-0x08] same same
0x17: add rsp, 8 rsp+0x10 [CFA-0x08] same same
0x1a: ret rsp+0x08 [CFA-0x08] same same

[Slide 334] Call Frame Information – Exercise

In-Class Exercise:

• Download ex10.txt from the course website
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10.2 Call Frame Information

• Construct the CFI tables for both functions
(you can omit lines that don’t change)

[Slide 335] Call Frame Information: Encoding

• Expanded table can be huge
• Contents change rather seldomly

– Mainly in prologue/epilogue, but mostly constant in-between
• Idea: encode table as bytecode
• Bytecode has instructions to create a now row

– Advance machine code location
• Bytecode has instructions to define CFA value
• Bytecode has instructions to define register location
• Bytecode has instructions to remember and restore state

Important operations (see DWARF standarda section 6.4.2 for a complete list):
• DW_CFA_def_cfa: define CFA register and offset
• DW_CFA_def_cfa_offset: define CFA offset, keep register unchanged
• DW_CFA_def_cfa_register: define CFA register, keep ofset unchanged
• DW_CFA_offset: register is stored at CFA plus offset
• DW_CFA_undefined: register is undefined/not recoverable
• DW_CFA_same_value: register is unmodified
• DW_CFA_advance_loc: create new row and advance machine code offset

aDWARF Debugging Information Committee. DWARF Debugging Information Format Version 5.
Feb. 2017. url: http://dwarfstd.org/doc/DWARF5.pdf.

[Slide 336] Call Frame Information: Bytecode – Example 1

CFA rip rbx

foo:
0: push rbx rsp+8 [CFA-8]
1: mov ebx, edi rsp+8 [CFA-8] [CFA-16]
3: call bar rsp+16 [CFA-8] [CFA-16]
8: mov eax, ebx rsp+16 [CFA-8] [CFA-16]
a: pop rbx rsp+16 [CFA-8] [CFA-16]
b: ret rsp+16 [CFA-8] [CFA-16]

=> DW_CFA_def_cfa: RSP +8
=> DW_CFA_offset: RIP -8
=> DW_CFA_advance_loc: 1
=> DW_CFA_def_cfa_offset: +16
=> DW_CFA_offset: RBX -16
=> DW_CFA_advance_loc: 10
=> DW_CFA_def_cfa_offset: +8
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10 Unwinding and Debuginfo

[Slide 337] Call Frame Information: Bytecode – Example 2

CFA rip rbp

foo:
0: push rbp rsp+8 [CFA-8]
1: mov rbp, rsp rsp+8 [CFA-8] [CFA-16]
4: shl rdi, 4 rsp+16 [CFA-8] [CFA-16]
8: sub rsp, rdi rbp+16 [CFA-8] [CFA-16]
b: mov rdi, rsp rbp+16 [CFA-8] [CFA-16]
e: call bar rbp+16 [CFA-8] [CFA-16]

13: leave rbp+16 [CFA-8] [CFA-16]
14: ret rbp+16 [CFA-8] [CFA-16]

=> DW_CFA_def_cfa: RSP +8
=> DW_CFA_offset: RIP -8
=> DW_CFA_advance_loc: 1
=> DW_CFA_def_cfa_offset: +16
=> DW_CFA_offset: RBP -16
=> DW_CFA_advance_loc: 3
=> DW_CFA_def_cfa_register: RBP
=> DW_CFA_advance_loc: 16
=> DW_CFA_def_cfa: RSP +8

[Slide 338] Call Frame Information: Bytecode – Example 3

CFA rip

foo:
0: sub rsp, 8 rsp+8 [CFA-8]
4: test edi, edi rsp+8 [CFA-8]
6: js 0x12 rsp+16 [CFA-8]
8: call positive rsp+16 [CFA-8]
d: add rsp, 8 rsp+16 [CFA-8]

11: ret rsp+16 [CFA-8]
12: call negative rsp+8 [CFA-8]
17: add rsp, 8 rsp+16 [CFA-8]
1a: ret rsp+16 [CFA-8]

=> DW_CFA_def_cfa: RSP +8
=> DW_CFA_offset: RIP -8
=> DW_CFA_advance_loc: 4
=> DW_CFA_def_cfa_offset: +16
=> DW_CFA_advance_loc: 13
=> DW_CFA_remember_state:
=> DW_CFA_def_cfa_offset: +8
=> DW_CFA_advance_loc: 1
=> DW_CFA_restore_state:
=> DW_CFA_advance_loc: 9
=> DW_CFA_def_cfa_offset: +8

Re-

member stack: {}

[Slide 339] Call Frame Information: Bytecode – Exercise

In-Class Exercise:

• For the functions in ex10.txt:
encode your CFI tables in DWARF CFI bytecode

• Can you reduce the size of the bytecode by changing or
omitting instructions while maintaining correctness?

[Slide 340] Call Frame Information: Bytecode

• DWARF1 specifies bytecode for call frame information
• Self-contained section .eh_frame (or .debug_frame)
• Series of entries; two possible types distinguished using header
• Frame Description Entry (FDE): description of a function

– Code range, instructions, pointer to CIE, language-specific data
• Common Information Entry (CIE): shared information among multiple FDEs

1DWARF Debugging Information Committee. DWARF Debugging Information Format Version 5. Feb.
2017. url: http://dwarfstd.org/doc/DWARF5.pdf.
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10.2 Call Frame Information

– Initial instrs. (prepended to all FDE instrs.), personality function, alignment
factors (constants factored out of instrs.), . . .

• readelf --debug-dump=frames <file>
llvm-dwarfdump --debug-frame <file>

[Slide 341] Call Frame Information: .eh_frame_hdr2

• Problem: linear search over – possibly many – FDEs is slow
• Idea: create binary search table over FDEs at link-time
• Ordered list of all function addresses and their FDE
• Unwinder does binary search to find matching FDE
• Separate program header entry: PT_GNU_EH_FRAME
• Unwinder needs loader support to find these

– _dl_find_object or dl_iterate_phdr
• FDEs and indices are cached to avoid redundant lookups

[Slide 342] Call Frame Information: Assembler Directives

• Compilers produces textual CFI
• Assembler encodes CFI into binary format

– Allows for integration of annotated inline assembly
– Inline-asm also needs CFI directives

• Register numbers specified by psABI
• Wrap function with .cfi_startproc/.cfi_endproc
• Many directives map straight to DWARF instructions

– .cfi_def_cfa_offset 16; .cfi_offset %rbp, -16; .cfi_def_cfa_register
%rbp

[Slide 343] Call Frame Information: Assembler Directives – Example

int bar(int*);
int foo(unsigned long x) {
int arr[x * 4];
return bar(arr);

}

gcc -O -S foo.c
.globl foo
.type foo, @function

foo:
.cfi_startproc
push rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
mov rbp, rsp
.cfi_def_cfa_register 6

2https://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/
ehframechpt.html
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10 Unwinding and Debuginfo

shl rdi, 4
sub rsp, rdi
mov rdi, rsp
call bar
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.size foo, .-foo

[Slide 344] Unwinding from Signal Handler

• Unwinding is conceptually supported even from signal handlers
⇝ Possible to get backtraces in-program in signal handler
• Unwind info must be correct at every single instruction (“asynchronous”)

– Otherwise, it only needs to be correct at calls (“synchronous unwinding”)
• Is throwing exceptions from signal handlers safe? No!

– Variables can be in an inconsistent state, e.g. in the middle of a copy
– Possible and viable only under very limited and controlled circumstances

[Slide 345] Unwinding: Other Platforms

• Unwinding depends strongly on OS and architecture
• GNU/Linux uses DWARF
• Apple has modified compact version
• Windows has SEH with kernel-support for unwinding
• IBM AIX has their own format
• AArch32 has another custom format
• Additionally: minor differences for return address, stack handling, . . .

Needs to work reliably for exception handling

10.3 Debug Information

[Slide 346] Debugging: Wanted Features

• Get back trace ⇝ CFI
• Map address to source file/line ⇝ Line Table
• Show global and local variables ⇝ DIE tree

– Local variables need scope information, e.g. shadowing
– Data type information, e.g. int, string, struct, enum

• Set break point at line/function ⇝ Line Table/DIE tree
– Might require multiple actual breakpoints: inlining, template expansion

• Step through program by line/statement ⇝ Line Table
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[Slide 347] Debug Frame Information

• .debug_frame is very similar to .eh_frame
• Caveat: there are subtle encoding differences
• eh_frame allows for some (GNU) extensions

[Slide 348] Line Table

• Map instruction to: file/line/column and ISA mode
• Also: mark start of stmt; start of basic block; prologue end/epilogue begin

– Provide breakpoint hints for lines, function entry/exit
• Table can be huge; idea: encode as bytecode
• Extracted information are bytecode registers
• Conceptually similar to CFI encoding
• llvm-dwarfdump -v --debug-line or readelf -wlL

[Slide 350] DWARF: Hierarchical Program Description

• Extensible, flexible, Turing-complete3 format to describe program
• Forest of Debugging Information Entries (DIEs)

– Tag: indicates what the DIE describes
– Set of attributes: describe DIE (often constant, range, or arbitrary expression)
– Optionally children

• Rough classification:
– DIEs for types: base types, typedef, struct, array, enum, union, . . .
– DIEs for data objects: variable, parameter, constant
– DIEs for program scope: compilation unit, function, block, . . .

[Slide 351] DWARF: Data Types

DW_TAG_structure_type [0x2e]
DW_AT_byte_size (0x08)
DW_AT_sibling (0x4a)
DW_TAG_member [0x37]

DW_AT_name ("x")
DW_AT_type (0x4a "int")
DW_AT_data_member_location (0x00)

DW_TAG_member [0x40]
DW_AT_name ("y")
DW_AT_type (0x4a "int")
DW_AT_data_member_location (0x04)

DW_TAG_base_type [0x4a]
DW_AT_byte_size (0x04)
DW_AT_encoding (DW_ATE_signed)
DW_AT_name ("int")

3J Oakley and S Bratus. “Exploiting the Hard-Working DWARF: Trojan and Exploit Techniques with
No Native Executable Code”. In: WOOT. 2011. url: https://www.usenix.org/events/woot11/
tech/final_files/Oakley.pdf.
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10 Unwinding and Debuginfo

DW_TAG_pointer_type [0xb1]
DW_AT_byte_size (8)
DW_AT_type (0xb6 "char *")

DW_TAG_pointer_type [0xb6]
DW_AT_byte_size (8)
DW_AT_type (0xbb "char")

DW_TAG_base_type [0xbb]
DW_AT_byte_size (0x01)
DW_AT_encoding (DW_ATE_signed_char)
DW_AT_name ("char")

[Slide 352] DWARF: Variables

DW_TAG_variable [0xa3]
DW_AT_name ("x")
DW_AT_decl_file ("/path/to/main.c")
DW_AT_decl_line (2)
DW_AT_decl_column (0x2e)
DW_AT_type (0x4a "int")
DW_AT_location (0x3b:

[0x08, 0x0c): DW_OP_breg3 RBX+0, DW_OP_lit1, DW_OP_shl, DW_OP_stack_value
[0x0c, 0x0d): DW_OP_entry_value(DW_OP_reg5 RDI), DW_OP_lit1, \

DW_OP_shl, DW_OP_stack_value)

DW_TAG_formal_parameter [0x7f]
DW_AT_name ("argc")
// ...

[Slide 353] DWARF: Expressions

• Very general way to describe location of value: bytecode
• Stack machine, evaluates to location or value of variable

– Simple case: register or stack slot
– But: complex expression to recover original value after optimization e.g., able

to recover i from stored i− 1
– Unbounded complexity!

• Can contain control flow
• Can dereference memory, registers, etc.
• Used for: CFI locations, variable locations, array sizes, . . .

[Slide 354] DWARF: Program Structure

• Follows structure of code
• Top-level: compilation unit
• Entries for namespaces, subroutines (functions)

– Functions can contain inlined subroutines
• Lexical blocks to group variables
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10.3 Debug Information

• Call sites and parameters
• Each node annotated with pc-range and source location

[Slide 356] Other Debuginfo Formats

• DWARF is big despite compression
• Cannot run in time-constrained environments

– Unsuited for in-kernel backtrace generation
• Historically: STABS – string based encoding

– Complexity increased significantly over time
• Microsoft: PDB for PE
• Linux kernel: CTF for simple type information
• Linux kernel: BTF for BPF programs

[Slide 357] Unwinding and Debuginfo – Summary

• Some languages/setups must be able to unwind the stack
• Needs meta-information on call frames
• DWARF encodes call frame information is bytecode program
• Runtime must efficiently find relevant information
• Stack unwinding typically done in two phases
• Functions have associated personality function to steer unwinding
• DWARF encodes debug info in tree structure of DIEs
• DWARF info can become arbitrarily complex

[Slide 358] Unwinding and Debuginfo – Questions

• What are alternatives to stack unwinding?
• What are the benefits of stack unwinding through metadata?
• What are the two phases of unwinding? Why is this separated?
• How to construct a CFI table for a given assembly code?
• How to construct DWARF ops for a CFI table?
• How to find the correct CFI table line for a given address?
• What is the general structure of DWARF debug info?
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