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What is a Relational Database System?

Relational Database Management Systems:
• store data as relations: set of named tuples

• abstract away from how data is stored and processed (physical data independence)
• users formulate declarative queries to retrieve/compute data, using relational algebra
• typically use SQL as the query language
• power the business world
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Introduction to Query Engines What is a Relational Database System?

Why isn’t one system enough for all?

In most cases, performance of database systems is highly important!

⇒ systems are optimized for
• different workloads

• OLTP: Online Transaction Processing systems handle frequent updates.
e.g. banking services

• OLAP: Online Analytical Processing systems handle analysis of large datasets.
e.g. business analytics and recommendations for large online shops

• HTAP: Hybrid transactions/analytical processing systems support both workloads.
e.g. business analytics and recommendations for large online shops on live data

• different use-cases (e.g., time-series, graph)
• different hardware/environments

Sometimes other criteria (e.g., robustness) are more important
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What is a Query Engine?

• a large part of database systems

• takes an SQL query as input
• executes the query
• interacts with other components
• returns the result

SQL

Parser

Semantic
Analysis

AST

Query
Optimizer

Logical Plan

Query
Executor

Physical Plan

Storage
Engine

Result

Query Engine
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Query Engine: SQL Query

select s.sname
from student s, attend a, lecture l, professor p
where s.sno = a.asno and a.alno = l.lno and

l.lpno = p.pno and p.pname ='Sokrates'
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Query Engine: Parser & Semantic Analysis

• Parser creates abstract syntax tree (AST)
Query

SelectStmt

SelectClause

QualName

ssname

FromClause

TableAlias

students

TableAlias

attenda

TableAlias

lecturel

TableAlias

professorp

WhereClause

AND

AND

EQ

QualName

llpno

QualName

ppno

EQ

QualName

ppname

Const
(’Sokrates’)

...

• Semantic Analysis: resolve references, type inference, eliminate syntactic sugar
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Query Engine: Logical Operators

• canonical translation into logical operators

• based on relational algebra
• but: smaller differences (e.g., multi-set

semantics)
• also new logical operators (e.g., window

functions)

Πs.sname

σs.sno=a.asno∧a.alno=l.lno∧l.lpno=p.pno∧p.pname=′Sokrates′

professor

lecture

attendsstudent
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Query Engine: Query Optimizer

• transforms plan into optimized but
equivalent plan

• common optimizations:

• simplifications
• predicate pushdown
• cost-based reordering of operators
• unnesting of correlated subqueries

• complex topic on its own which we won’t
cover here in detail
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Query Engine: Physical Operators

• in many cases there are different physical implementations of logical operators

• query optimizer usually select an implementation based on required properties and estimated costs
• typical variants:

• Index-based: use existing index (e.g., B-tree) to efficiently execute index-joins or tablescans
• Hash-based: use hash-tables for implementing for example hash-joins and hash-aggregations
• Sorting-based: sorts data and then exploits this for sortmerge-joins or sort-based aggregations
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Query Engine: Volcano/Iterator model
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Query Engine: Volcano/Iterator model
class Iterator:

def open()
def next()

class Output(Iterator):
def next():

while True:
row = child.next()
if row is None: break
print(row)

class TableScan(Iterator):
i = 0

def next():
if i >= len(table): return None
row = table[i]
i += 1
return row

class Selection(Iterator):
def next():

while True:
row = child.next()
if row is None: return None
if pred(row): return row

class HashJoin(Iterator):

def open():
ht = {}
# build hashtable with left size
while True:

l = left.next()
if l is None: break
ht.insert(l)

q = queue()

def next():
# we still have tuples left
if q: return q.pop()
# we need to get a new tuple
while True:

r = right.next()
if r is None: return None
# compute matches for current
for m in ht.lookup(r):

q.push(m+r)
# return first match
if q: return q.pop()
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Query Engine: Query Execution

• Iterator model is one way of executing queries
• Problem: high overhead per tuple
• Other approaches try to avoid or amortize this

overhead
• Examples:

• Postgres (pull, interpret, tuple-at-a-time)
• DuckDB (push, interpret, vector-at-a-time)
• Hyper (push, compile, tuple-at-a-time)
• ...

• We will learn more about this in the
seminar

Pull-based vs Push-based

• pull-based (next() interface)
• push-based (consume() interface)

Interpretation vs Compilation

• interpretation: virtual function calls
• compilation: generate specialized code for each

query

How many tuples at a time?

• tuple-at-a-time
• vector-at-a-time
• column-at-a-time
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Challenges of building query engines

Complex Systems

• Many (non-standard) operators (e.g,
SemiJoins)

• SQL is complex!
• optimizations add further operators (e.g.,

GroupJoin)

Performance Focused

• Get most out of the hardware
• Exploit Parallelism
• SIMD
• GPUs
• avoid frequent allocations
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Benchmarking

• Focus on Performance → benchmarks

• Different goals depending on workload:

• OLAP: low latency
• OLTP: high throughput

• standardized benchmarks provided by TPC (Transaction Processing Council)

• TPC-H: 22 OLAP queries
• TPC-DS: ≈ 100 OLAP queries
• TPC-C: OLTP benchmark

• A lot more benchmarks exist with a different focus (e.g., JOB, SSB, clickbench)
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Query Engines @ TUM

TUM’s database group has been building query engine for a long time

Hyper
• started ≈ 2010
• 2015: startup
• 2016: sold to Tableau
• 2020: Tableau sold to Salesforce

Umbra
• started ≈ 2018
• large parts of our group work on/with Umbra
• 2024: CedarDB

LingoDB
• started 2021
• open source
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