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Relational Database Management Systems:

store data as relations: set of named tuples

abstract away from how data is stored and processed (physical data independence)
users formulate declarative queries to retrieve/compute data, using relational algebra
typically use SQL as the query language

power the business world
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Why isn't one system enough for all?

In most cases, performance of database systems is highly important!

= systems are optimized for

o different workloads
® OLTP: Online Transaction Processing systems handle frequent updates.
e.g. banking services
® OLAP: Online Analytical Processing systems handle analysis of large datasets.
e.g. business analytics and recommendations for large online shops
® HTAP: Hybrid transactions/analytical processing systems support both workloads.
e.g. business analytics and recommendations for large online shops on live data

e different use-cases (e.g., time-series, graph)

e different hardware/environments

Sometimes other criteria (e.g., robustness) are more important
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What is a Query Engine?

a large part of database systems

takes an SQL query as input

executes the query

interacts with other components

returns the result
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QU Eiic
Query Engine: SQL Query

select s.sname

from student s, attend a, lecture 1, professor p

where s.sno = a.asno and a.alno = 1.lno and
1.lpno = p.pno and p.pname ='Sokrates'



QieryjEngiines
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® Parser creates abstract syntax tree (AST)

Query
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® Semantic Analysis: resolve references, type inference, eliminate syntactic sugar
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Query Engine: Logical Operators

H&sname

® canonical translation into Iogical operators Os.sno=a.asnoAa.alno=l.lnoAl.lpno=p.pnoAp.pname="'Sokrates’

® based on relational algebra |

X

® but: smaller differences (e.g., multi-set PN
semantics) X professor

® also new logical operators (e.g., window % s loct
functions) e ecture

student attends
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Query Engine: Query Optimizer

Hs.sname
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® transforms plan into optimized but
equivalent plan

® common optimizations: 9 7N d
® simplifications a;lno:gno students
® predicate pushdown X} 1omon.ono  attends
® cost-based reordering of operators '/p _p'p\
® unnesting of correlated subqueries

Op.pname='Sokrates’ lecture
® complex topic on its own which we won't \
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Query Engine: Physical Operators

® in many cases there are different physical implementations of logical operators
® query optimizer usually select an implementation based on required properties and estimated costs
® typical variants:

® Index-based: use existing index (e.g., B-tree) to efficiently execute index-joins or tablescans
® Hash-based: use hash-tables for implementing for example hash-joins and hash-aggregations
® Sorting-based: sorts data and then exploits this for sortmerge-joins or sort-based aggregations
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Query Engine: Volcano/lterator model

class Iterator:
def open()
def next()

class Output(Iterator):
def next():
while True:
row = child.next()
if row is None: break
print(row)

class TableScan(Iterator):
i=0
def next():
if i >= len(table): return None
row = table[i]
i+=1
return row

class Selection(Iterator):
def next():
while True:
row = child.next()
if row is None: return None
if pred(row): return row

class HashJoin(Iterator):

def open():

ht = {}

# build hashtable with left size

while True:
1 = left.next()
if 1 is None: break
ht.insert(1l)

q = queue()

def next():
# we still have tuples left
if q: return q.pop()
# we need to get a new tuple
while True:
r = right.next()
if r is None: return None
# compute matches for current
for m in ht.lookup(r):
g.push(m+r)
# return first match
if q: return q.pop()
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Pull-based vs Push-based

® |terator model is one way of executing queries ® pull-based (next() interface)

® Problem: high overhead per tuple ® push-based (consume () interface)

® Other approaches try to avoid or amortize this |nterpretation vs Compilation
overhead

® interpretation: virtual function calls
® Examples:

) ) e compilation: generate specialized code for each
® Postgres (pull, interpret, tuple-at-a-time)

® DuckDB (push, interpret, vector-at-a-time) query
® Hyper (push, compile, tuple-at-a-time) How many tuples at a time?
® .. ® tuple-at-a-time

® We will learn more about this in the ® vector-at-a-time

seminar .
® column-at-a-time
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Challenges of building query engines

Complex Systems Performance Focused

® Many (non-standard) operators (e.g, ® Get most out of the hardware

SemiJoins) ® Exploit Parallelism
® SQL is complex! e SIMD
® optimizations add further operators (e.g., ® GPUs
GroupJoin) ® avoid frequent allocations
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Benchmarking

® Focus on Performance — benchmarks

e Different goals depending on workload:
® OLAP: low latency
® OLTP: high throughput

® standardized benchmarks provided by TPC (Transaction Processing Council)
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® TPC-H: 22 OLAP queries
® TPC-DS: ~ 100 OLAP queries
® TPC-C: OLTP benchmark

® A lot more benchmarks exist with a different focus (e.g., JOB, SSB, clickbench)
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TUM'’s database group has been building query engine for a long time

Hyper
® started =~ 2010
® 2015: startup
2016: sold to Tableau
® 2020: Tableau sold to Salesforce

Umbra

¢ sored = 201 (8 UMBRA

® large parts of our group work on/with Umbra
® 2024: CedarDB

LingoDB .
Ogstarted 2021 % LI ngo D B

® open source
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