Introduction to Query Engines

Introduction to Query Engines

What s 2 Relational Database System?
What is a Relational Database System?

Relational Database Management Systems:
® store data as relations: set of named tuples

Whatlile]Relationsl| Databaselsystemd
What is a Relational Database System?

Relational Database Management Systems:
® store data as relations: set of named tuples

® abstract away from how data is stored and processed (physical data independence)

Whatlile]Relationsl| Databaselsystemd
What is a Relational Database System?

Relational Database Management Systems:
® store data as relations: set of named tuples
® abstract away from how data is stored and processed (physical data independence)

® users formulate declarative queries to retrieve/compute data, using relational algebra

Introduction to Query Engines What is a Relational Database System?

What is a Relational Database System?

Relational Database Management Systems:
® store data as relations: set of named tuples
® abstract away from how data is stored and processed (physical data independence)
® users formulate declarative queries to retrieve/compute data, using relational algebra

® typically use SQL as the query language

Whatlile]Rslationsl|DotsbaselSystem?
What is a Relational Database System?

Relational Database Management Systems:

store data as relations: set of named tuples

abstract away from how data is stored and processed (physical data independence)
users formulate declarative queries to retrieve/compute data, using relational algebra
typically use SQL as the query language

power the business world

WiEt: (5 & (R e Deielzes Sy
Why isn't one system enough for all?
In most cases, performance of database systems is highly important!

= systems are optimized for
o different workloads

Introduction to Query Engines What is a Relational Database System?

Why isn't one system enough for all?

In most cases, performance of database systems is highly important!

= systems are optimized for
o different workloads

® OLTP: Online Transaction Processing systems handle frequent updates.
e.g. banking services

hadlielelotional]DatabasslSveromy
Why isn't one system enough for all?

In most cases, performance of database systems is highly important!

= systems are optimized for

o different workloads
® OLTP: Online Transaction Processing systems handle frequent updates.
e.g. banking services
® OLAP: Online Analytical Processing systems handle analysis of large datasets.
e.g. business analytics and recommendations for large online shops

hadlielelotional]DatabasslSveromy
Why isn't one system enough for all?

In most cases, performance of database systems is highly important!

= systems are optimized for

o different workloads
® OLTP: Online Transaction Processing systems handle frequent updates.
e.g. banking services
® OLAP: Online Analytical Processing systems handle analysis of large datasets.
e.g. business analytics and recommendations for large online shops
® HTAP: Hybrid transactions/analytical processing systems support both workloads.
e.g. business analytics and recommendations for large online shops on live data

hadlielelotional]DatabasslSveromy
Why isn't one system enough for all?

In most cases, performance of database systems is highly important!

= systems are optimized for

o different workloads
® OLTP: Online Transaction Processing systems handle frequent updates.
e.g. banking services
® OLAP: Online Analytical Processing systems handle analysis of large datasets.
e.g. business analytics and recommendations for large online shops
® HTAP: Hybrid transactions/analytical processing systems support both workloads.
e.g. business analytics and recommendations for large online shops on live data

e different use-cases (e.g., time-series, graph)

hadlielelotional]DatabasslSveromy
Why isn't one system enough for all?

In most cases, performance of database systems is highly important!

= systems are optimized for

o different workloads
® OLTP: Online Transaction Processing systems handle frequent updates.
e.g. banking services
® OLAP: Online Analytical Processing systems handle analysis of large datasets.
e.g. business analytics and recommendations for large online shops
® HTAP: Hybrid transactions/analytical processing systems support both workloads.
e.g. business analytics and recommendations for large online shops on live data

e different use-cases (e.g., time-series, graph)

e different hardware/environments

Sometimes other criteria (e.g., robustness) are more important

QU Eiic
What is a Query Engine?

® a large part of database systems

QU Eiic
What is a Query Engine?

® a large part of database systems

e takes an SQL query as input

QU Eiic
What is a Query Engine?

® a large part of database systems
e takes an SQL query as input
® executes the query

QU Eiic
What is a Query Engine?

® a large part of database systems

takes an SQL query as input
® executes the query

® interacts with other components

QU Eiic
What is a Query Engine?

® a large part of database systems

takes an SQL query as input
® executes the query

® interacts with other components

returns the result

Introduction to Query Engines Query Engines

What is a Query Engine?

a large part of database systems

takes an SQL query as input

executes the query

interacts with other components

returns the result

-

SQL

L

— |

Parser]

¢ AST

.

Semantic
Analysis |

¢ Logical

Query
Optimizer

Plan

v Physical Plan|

Query
Executor

Result

Storage
Engine

QU Eiic
Query Engine: SQL Query

select s.sname

from student s, attend a, lecture 1, professor p

where s.sno = a.asno and a.alno = 1.lno and
1.lpno = p.pno and p.pname ='Sokrates'

QieryjEngiines
Query Engine: Parser & Semantic Analysis

® Parser creates abstract syntax tree (AST)

Query
\
SelectStmt

L

WhereClause FromClause SelectClause
\ — ¥ T v

AND TableAlias TableAlias TableAlias TableAlias QualName
/ N ¥\ 2R ¥\ (2R e AN
h AND D professor 1 lecture 2 attend Sstudent sname S

/ \
EQ EQ

X PN
Const QualName QualName QualName
(’Sokrates’) PO Fox ¥
pname PPRoO P Ippo 1

® Semantic Analysis: resolve references, type inference, eliminate syntactic sugar

QieiyjEnelnes
Query Engine: Logical Operators

® canonical translation into logical operators

QieiyjEnelnes
Query Engine: Logical Operators

® canonical translation into logical operators

® based on relational algebra

Introduction to Query Engines Query Engines

Query Engine: Logical Operators

® canonical translation into logical operators
® based on relational algebra

® but: smaller differences (e.g., multi-set
semantics)

Introduction to Query Engines Query Engines

Query Engine: Logical Operators

® canonical translation into logical operators
® based on relational algebra

® but: smaller differences (e.g., multi-set
semantics)

® also new logical operators (e.g., window
functions)

Introduction to Query Engines Query Engines

Query Engine: Logical Operators

H&sname

® canonical translation into Iogical operators Os.sno=a.asnoAa.alno=l.lnoAl.lpno=p.pnoAp.pname="'Sokrates’

® based on relational algebra |

X

® but: smaller differences (e.g., multi-set PN
semantics) X professor

® also new logical operators (e.g., window % s loct
functions) e ecture

student attends

QU Eiic
Query Engine: Query Optimizer

® transforms plan into optimized but
equivalent plan

QU Eiic
Query Engine: Query Optimizer

® transforms plan into optimized but
equivalent plan

® common optimizations:

QU Eiic
Query Engine: Query Optimizer

® transforms plan into optimized but
equivalent plan
® common optimizations:

® simplifications

QU Eiic
Query Engine: Query Optimizer

® transforms plan into optimized but
equivalent plan
® common optimizations:
® simplifications
® predicate pushdown

QU Eiic
Query Engine: Query Optimizer

® transforms plan into optimized but
equivalent plan
® common optimizations:
® simplifications
® predicate pushdown
® cost-based reordering of operators

Introduction to Query Engines Query Engines

Query Engine: Query Optimizer

® transforms plan into optimized but
equivalent plan
® common optimizations:
® simplifications
® predicate pushdown
® cost-based reordering of operators
® unnesting of correlated subqueries

Introduction to Query Engines Query Engines

Query Engine: Query Optimizer

® transforms plan into optimized but
equivalent plan

® common optimizations:

simplifications

predicate pushdown

® cost-based reordering of operators

® unnesting of correlated subqueries

® complex topic on its own which we won’t
cover here in detail

Introduction to Query Engines Query Engines

Query Engine: Query Optimizer

Hs.sname
\

Ms.sno:a.asno

® transforms plan into optimized but
equivalent plan

® common optimizations: 9 7N d
® simplifications a;lno:gno students
® predicate pushdown X} 1omon.ono attends
® cost-based reordering of operators '/p _p'p\
® unnesting of correlated subqueries

Op.pname='Sokrates’ lecture
® complex topic on its own which we won't \

cover here in detail professor

QieiyjEnelnes
Query Engine: Physical Operators

® in many cases there are different physical implementations of logical operators

QieiyjEnelnes
Query Engine: Physical Operators

® in many cases there are different physical implementations of logical operators

® query optimizer usually select an implementation based on required properties and estimated costs

QieiyjEnelnes
Query Engine: Physical Operators

® in many cases there are different physical implementations of logical operators
® query optimizer usually select an implementation based on required properties and estimated costs
® typical variants:

QieiyjEnelnes
Query Engine: Physical Operators

® in many cases there are different physical implementations of logical operators
® query optimizer usually select an implementation based on required properties and estimated costs
® typical variants:

® Index-based: use existing index (e.g., B-tree) to efficiently execute index-joins or tablescans

QieiyjEnelnes
Query Engine: Physical Operators

® in many cases there are different physical implementations of logical operators
® query optimizer usually select an implementation based on required properties and estimated costs
® typical variants:

® Index-based: use existing index (e.g., B-tree) to efficiently execute index-joins or tablescans
® Hash-based: use hash-tables for implementing for example hash-joins and hash-aggregations

QieiyjEnelnes
Query Engine: Physical Operators

® in many cases there are different physical implementations of logical operators
® query optimizer usually select an implementation based on required properties and estimated costs
® typical variants:

® Index-based: use existing index (e.g., B-tree) to efficiently execute index-joins or tablescans
® Hash-based: use hash-tables for implementing for example hash-joins and hash-aggregations
® Sorting-based: sorts data and then exploits this for sortmerge-joins or sort-based aggregations

Introduction to Query Engines Query Engines

Query Engine: Volcano/lterator model

Introduction to Query Engines Query Engines

Query Engine: Volcano/lterator model

class Iterator:
def open()
def next()

class Output(Iterator):
def next():
while True:
row = child.next()
if row is None: break
print(row)

class TableScan(Iterator):
i=0
def next():
if i >= len(table): return None
row = table[i]
i+=1
return row

class Selection(Iterator):
def next():
while True:
row = child.next()
if row is None: return None
if pred(row): return row

class HashJoin(Iterator):

def open():

ht = {}

build hashtable with left size

while True:
1 = left.next()
if 1 is None: break
ht.insert(1l)

q = queue()

def next():
we still have tuples left
if q: return q.pop()
we need to get a new tuple
while True:
r = right.next()
if r is None: return None
compute matches for current
for m in ht.lookup(r):
g.push(m+r)
return first match
if q: return q.pop()

QieiyjEnelnes
Query Engine: Query Execution

QieiyjEnelnes
Query Engine: Query Execution

® |terator model is one way of executing queries

QieiyjEnelnes
Query Engine: Query Execution

® |terator model is one way of executing queries

® Problem: high overhead per tuple

QieryjEngiines
Query Engine: Query Execution

® |terator model is one way of executing queries
® Problem: high overhead per tuple

® QOther approaches try to avoid or amortize this
overhead

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based
® |terator model is one way of executing queries
® Problem: high overhead per tuple

® QOther approaches try to avoid or amortize this
overhead

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based
® |terator model is one way of executing queries ® pull-based (next() interface)
® Problem: high overhead per tuple

® QOther approaches try to avoid or amortize this
overhead

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based
® |terator model is one way of executing queries ® pull-based (next() interface)
® Problem: high overhead per tuple ® push-based (consume () interface)

® Other approaches try to avoid or amortize this
overhead

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based
® |terator model is one way of executing queries ® pull-based (next() interface)
® Problem: high overhead per tuple ® push-based (consume () interface)

® Other approaches try to avoid or amortize this |nterpretation vs Compilation
overhead

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based
® |terator model is one way of executing queries ® pull-based (next() interface)
® Problem: high overhead per tuple ® push-based (consume () interface)
® Other approaches try to avoid or amortize this Interpretation vs Compilation
overhead ® interpretation: virtual function calls

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based

® |terator model is one way of executing queries ® pull-based (next() interface)

® Problem: high overhead per tuple ® push-based (consume () interface)

® Other approaches try to avoid or amortize this |nterpretation vs Compilation
overhead ® interpretation: virtual function calls

e compilation: generate specialized code for each
query

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based
® |terator model is one way of executing queries ® pull-based (next() interface)
® Problem: high overhead per tuple ® push-based (consume () interface)
® Other approaches try to avoid or amortize this |nterpretation vs Compilation
overhead ® interpretation: virtual function calls
e compilation: generate specialized code for each
query
How many tuples at a time?

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based
® |terator model is one way of executing queries ® pull-based (next() interface)
® Problem: high overhead per tuple ® push-based (consume () interface)
® Other approaches try to avoid or amortize this |nterpretation vs Compilation
overhead ® interpretation: virtual function calls
e compilation: generate specialized code for each
query
How many tuples at a time?

® tuple-at-a-time

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based
® |terator model is one way of executing queries ® pull-based (next() interface)
® Problem: high overhead per tuple ® push-based (consume () interface)
® Other approaches try to avoid or amortize this |nterpretation vs Compilation
overhead ® interpretation: virtual function calls
e compilation: generate specialized code for each
query
How many tuples at a time?
® tuple-at-a-time
® vector-at-a-time

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based
® |terator model is one way of executing queries ® pull-based (next() interface)
® Problem: high overhead per tuple ® push-based (consume () interface)
® Other approaches try to avoid or amortize this |nterpretation vs Compilation
overhead ® interpretation: virtual function calls
e compilation: generate specialized code for each
query
How many tuples at a time?
® tuple-at-a-time
® vector-at-a-time

® column-at-a-time

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based

® |terator model is one way of executing queries ® pull-based (next() interface)

® Problem: high overhead per tuple ® push-based (consume () interface)

® Other approaches try to avoid or amortize this |nterpretation vs Compilation
overhead ® interpretation: virtual function calls

® Examples:

e compilation: generate specialized code for each
query
How many tuples at a time?

® Postgres (pull, interpret, tuple-at-a-time)
DuckDB (push, interpret, vector-at-a-time)
Hyper (push, compile, tuple-at-a-time)

® tuple-at-a-time
® vector-at-a-time

® column-at-a-time

QieryjEngiines
Query Engine: Query Execution

Pull-based vs Push-based

® |terator model is one way of executing queries ® pull-based (next() interface)

® Problem: high overhead per tuple ® push-based (consume () interface)

® Other approaches try to avoid or amortize this |nterpretation vs Compilation
overhead

® interpretation: virtual function calls
® Examples:

)) e compilation: generate specialized code for each
® Postgres (pull, interpret, tuple-at-a-time)

® DuckDB (push, interpret, vector-at-a-time) query
® Hyper (push, compile, tuple-at-a-time) How many tuples at a time?
® .. ® tuple-at-a-time

® We will learn more about this in the ® vector-at-a-time

seminar .
® column-at-a-time

QieiyjEnelnes
Challenges of building query engines

QieiyjEnelnes
Challenges of building query engines

Complex Systems

QieiyjEnelnes
Challenges of building query engines

Complex Systems

® Many (non-standard) operators (e.g,
SemiJoins)

QieryjEngiines
Challenges of building query engines

Complex Systems

® Many (non-standard) operators (e.g,
SemiJoins)

® SQL is complex!

QieryjEngiines
Challenges of building query engines

Complex Systems

® Many (non-standard) operators (e.g,
SemiJoins)

® SQL is complex!

® optimizations add further operators (e.g.,
GroupJoin)

QieryjEngiines
Challenges of building query engines

Complex Systems Performance Focused

® Many (non-standard) operators (e.g,
SemiJoins)

® SQL is complex!

® optimizations add further operators (e.g.,
GroupJoin)

QieryjEngiines
Challenges of building query engines

Complex Systems Performance Focused

* Many (non-standard) operators (e.g, ® Get most out of the hardware

SemiJoins)
® SQL is complex!

® optimizations add further operators (e.g.,
GroupJoin)

QieryjEngiines
Challenges of building query engines

Complex Systems Performance Focused

* Many (non-standard) operators (e.g, ® Get most out of the hardware

SemiJoins) ® Exploit Parallelism
® SQL is complex!

® optimizations add further operators (e.g.,
GroupJoin)

QieryjEngiines
Challenges of building query engines

Complex Systems Performance Focused

* Many (non-standard) operators (e.g, ® Get most out of the hardware

SemiJoins) ® Exploit Parallelism
® SQL is complex! e SIMD

® optimizations add further operators (e.g.,
GroupJoin)

QieryjEngiines
Challenges of building query engines

Complex Systems Performance Focused

® Many (non-standard) operators (e.g, ® Get most out of the hardware

SemiJoins) ® Exploit Parallelism
® SQL is complex! e SIMD
® optimizations add further operators (e.g., e GPUs

GroupJoin)

QieryjEngiines
Challenges of building query engines

Complex Systems Performance Focused

® Many (non-standard) operators (e.g, ® Get most out of the hardware

SemiJoins) ® Exploit Parallelism
® SQL is complex! e SIMD
® optimizations add further operators (e.g., ® GPUs
GroupJoin) ® avoid frequent allocations

Introduction to Query Engines Query Engines

Benchmarking

® Focus on Performance — benchmarks

Introduction to Query Engines Query Engines

Benchmarking

® Focus on Performance — benchmarks
e Different goals depending on workload:

Introduction to Query Engines Query Engines

Benchmarking

® Focus on Performance — benchmarks
e Different goals depending on workload:
® OLAP: low latency

Introduction to Query Engines Query Engines

Benchmarking

® Focus on Performance — benchmarks
e Different goals depending on workload:

® OLAP: low latency
® OLTP: high throughput

Introduction to Query Engines Query Engines

Benchmarking

® Focus on Performance — benchmarks
e Different goals depending on workload:
® OLAP: low latency
® OLTP: high throughput
® standardized benchmarks provided by TPC (Transaction Processing Council)
r JEZ 0 AMDIU wwemor cdul DAL imisraws HITACHI
PC® %’\% !,E!I RN intel B¥ Microsoft NUTANI.
g *

s ORACLE @ RedHat pifimecho rramspaser 1'1-[\ vmware

Introduction to Query Engines Query Engines

Benchmarking

® Focus on Performance — benchmarks
e Different goals depending on workload:
® OLAP: low latency
® OLTP: high throughput

® standardized benchmarks provided by TPC (Transaction Processing Council)

r A..g%:c", AMDZU titor: .::IIIS.(IfIO“ %IZ ﬁ;mmw HITACHI
| P(® $e TEIT sesz intel B Micosot NLTANDS
k :,%A ORACLE @ RedHat [timecho \

® TPC-H: 22 OLAP queries

TRANSWARP TTA vmware

Introduction to Query Engines Query Engines

Benchmarking

® Focus on Performance — benchmarks
e Different goals depending on workload:
® OLAP: low latency
® OLTP: high throughput

® standardized benchmarks provided by TPC (Transaction Processing Council)

r A..g%:c", AMDZU titor: .::IIIS.(IfIO“ %IZ ﬁ;mmw HITACHI
| P(® $e TEIT sesz intel B Micosot NLTANDS
k :,%A ORACLE @ RedHat [timecho \

® TPC-H: 22 OLAP queries
® TPC-DS: ~ 100 OLAP queries

TRANSWARP TTA vmware

Introduction to Query Engines Query Engines

Benchmarking

® Focus on Performance — benchmarks

e Different goals depending on workload:
® OLAP: low latency
® OLTP: high throughput

® standardized benchmarks provided by TPC (Transaction Processing Council)

r JEZ 0 AMDIU wwemor cdul DAL imisraws HITACHI
! I ‘P‘ t® %1% !v E!I Gus intel B% Microsoft NUTANDS.
k <3 \

. ORACLE {@RedHat poitimecho rmamspnme 1'1-[\ vmware

® TPC-H: 22 OLAP queries
® TPC-DS: ~ 100 OLAP queries
® TPC-C: OLTP benchmark

Introduction to Query Engines Query Engines

Benchmarking

® Focus on Performance — benchmarks

e Different goals depending on workload:
® OLAP: low latency
® OLTP: high throughput

® standardized benchmarks provided by TPC (Transaction Processing Council)

r JEZ 0 AMDIU wwemor cdul DAL imisraws HITACHI
‘I‘P‘ t® %’\% !g!I Gus intel B% Microsoft NUTANDS.

~ ORACLE @ RedHat pi¥fimecho Tramspare 1'1-[\ vmware

® TPC-H: 22 OLAP queries
® TPC-DS: ~ 100 OLAP queries
® TPC-C: OLTP benchmark

® A lot more benchmarks exist with a different focus (e.g., JOB, SSB, clickbench)

QU Eiic
Query Engines @ TUM

TUM'’s database group has been building query engine for a long time

QU Eiic
Query Engines @ TUM

TUM'’s database group has been building query engine for a long time

Hyper
® started =~ 2010
® 2015: startup
2016: sold to Tableau
2020: Tableau sold to Salesforce

QU Eiic
Query Engines @ TUM

TUM'’s database group has been building query engine for a long time

Hyper
® started =~ 2010
2015: startup
2016: sold to Tableau
® 2020: Tableau sold to Salesforce

Umbra

¢ sored = 201 (8 UMBRA

® large parts of our group work on/with Umbra
® 2024: CedarDB

QU Eiic
Query Engines @ TUM

TUM'’s database group has been building query engine for a long time

Hyper
® started =~ 2010
® 2015: startup
2016: sold to Tableau
® 2020: Tableau sold to Salesforce

Umbra

¢ sored = 201 (8 UMBRA

® large parts of our group work on/with Umbra
® 2024: CedarDB

LingoDB .
Ogstarted 2021 % LI ngo D B

® open source

	Introduction to Query Engines
	What is a Relational Database System?
	Query Engines

