
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 7: Binary Search Trees

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.07.01

AACPP 2025 Mateusz Gienieczko

Fifth round – survey

AACPP 2025 Mateusz Gienieczko

Course Evaluation

Reminder – please fill out the Course Evaluation for our course!

AACPP 2025 Mateusz Gienieczko

Sixth round

Deadline – 01.07.2025, 10:00 AM.

Note – including this round there will be only 𝟓 more tasks. Starting from
next round there’ll be only one task per week.

That gives 15 tasks total, 300 points to earn.

151 is guaranteed to pass.

We will decide the final grade thresholds based on the final ranking.

Remember – you can still submit tasks for all rounds until the end of semester
(05.08.2025).

AACPP 2025 Mateusz Gienieczko

GRR – Garden Road Routine

Given a directed graph, find all vertices that can reach all other vertices in
either 𝐺 or 𝐺−1.

In other words, {𝑣 ∈ 𝑉 | ∀𝑢∈𝑉 ,𝑢≠𝑣 .𝑣 ⇝ 𝑢 ∨ 𝑢 ⇝ 𝑣}. Call such vertices valid.

Very easy brute-force solution – for each vertex check the condition with DFS
and DFS on the inverted graph. 𝒪(𝑛𝑚)

AACPP 2025 Mateusz Gienieczko

GRR – Garden Road Routine

Observation – nodes in a strongly connected component are equivalent, i.e.
• a node is valid if and only if all other nodes in its SCC are valid;
• if for any node 𝑢 in the SCC some other node can reach it in either

orientation (i.e. 𝑣 ⇝ 𝑢 or 𝑢 ⇝ v), then it can also reach all nodes in 𝑢’s SCC.

So we can fold all vertices into their SCCs and from now on assume a DAG.

AACPP 2025 Mateusz Gienieczko

GRR – Garden Road Routine

It will be easier to consider when a node is invalid.

Since we have a DAG we can consider a topological order.

This simplifies, since if 𝑢 ≺ 𝑣 then 𝑣 ⇝ 𝑢.

Now 𝑣 is invalid if it is “jumped over” by any preceding node.

AACPP 2025 Mateusz Gienieczko

GRR – Garden Road Routine

If it’s jumped by some node then in particular there is a node 𝑥 , 𝑥 ≺ 𝑣 such that
the earliest vertex 𝑦 it has a direct edge to satisfies 𝑣 ≺ 𝑦 .

This makes the node definitely invalid. There might be more invalid nodes in
the reversed graph, but we can handle that separately later.

AACPP 2025 Mateusz Gienieczko

GRR – Garden Road Routine

We can calculate the minimum reachable vertex and then examine the “holes”
this creates.

Here, because 2 reaches only 5, both 3 and 4 are invalid. 6 is also invalid
because (5, ∞).

AACPP 2025 Mateusz Gienieczko

GRR – Garden Road Routine

Going from left to right we can find all invalid vertices by a kind-of two-
pointers approach.

Keep 𝑣 , 𝑢, where 𝑣 is the current candidate that could still be invalid, and 𝑢 is a
node whose “hole” we are evaluating. Keep 𝑢 ≺ 𝑣 .

If we have a hole (𝑢, 𝑦) then all vertices in [𝑣 , 𝑦) are invalid. Mark them and
advance 𝑣 accordingly.

AACPP 2025 Mateusz Gienieczko

GRR – Garden Road Routine

u = 0

v = 1

while u < n

 while v < minreach[u] and v < n

 invalid[v] = true

 v += 1

 u += 1

 if v <= u

 v = u + 1

AACPP 2025 Mateusz Gienieczko

GRR – Garden Road Routine

Run this again on reverse topo order and inverted edges to get all invalid
vertices.

Everything we’ve done is in 𝒪(𝑛 + 𝑚).

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

We can interpret the games as a multigraph on 𝑛 vertices.

The task is then to find an orientation of edges (who wins which game) such
that the maximal out-degree¹ over all vertices is minimal possible.

¹Equivalently in-degree, no difference, here we’ll assume (𝑣 , 𝑢) means 𝑣 won against 𝑢.
AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

There is a relatively “simple” solution in 𝒪(𝑚(𝑚 + 𝑛)) that doesn’t use any fancy
algorithms.

Idea: find any orientation of the edges and then repeatedly try to improve it.

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

An improvement is a path 𝑣 ⇝ 𝑢 such that outdeg(𝑣) ≥ outdeg(𝑢) + 2.

If we invert all edges on this path we increase the outdeg of 𝑢 by 1, decrease the
outdeg of 𝑣 by 1, and keep all other outdegs the same.

Algorithm: start with any orientation, find the vertex with max outdegree, find
any path to a small-outdeg vertex, flip it.

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

Perhaps surprisingly, this actually works, i.e. if we fix 𝑣 of highest outdegree 𝑑
and there is no path to a vertex with outdegree smaller by at least 2, then the
minimal outdegree in any orientation is at least 𝑑 .

Proof (sketch): Consider a DFS from 𝑣 and count the number of vertices and
edges in the DFS tree (all edges, including backward, forward, cross). Assume
there is 𝑘 vertices. Then there must be at least (𝑑 − 1)𝑘 + 1 edges, since the
minimum outdeg is 𝑑 − 1 except for 𝑣 which has one more. If we consider this
subgraph, there can be no way of orienting the edges in a way that leads to
(𝑑 − 1) max outdegree, since then we’d have at most (𝑑 − 1)𝑘 edges.

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

What is the time complexity of this approach?

The search for a path is in 𝒪(𝑛 + 𝑚).

It can be proven that if a given vertex is ever selected as the start of the path,
then it will never be selected as the endpoint of a path and thus its outdegree
will never increase.

Since each vertex can only be maximal as many times as its degree in the graph,
and sum of degrees is 2𝑚, we have 𝒪(𝑚) iterations.

In total we have 𝒪(𝑚(𝑛 + 𝑚)), which should yield us 6 points.

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

There is another bound on the number of iterations, namely the outdegree of
the initial orientation minus the end result.

By choosing a reasonable start orientation and being efficient in the
implementation of all steps it was possible to get 8 points².

²Or even 10, but that’s because our time limits were a bit too generous.
AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

Let’s try a different approach – the idea of finding augmenting paths looks
awfully similar to a flow problem.

We can design a flow network in which there exists a flow of size 𝑚 if and only
if the graph can be oriented such that the max outdegree is at most 𝑑 .

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

Algorithm: binary-search the result. For a given 𝑑 construct the flow network
and find the max-flow. If 𝑚, then we have an upper-bound, if not, we have a
lower-bound.

Restoring the result is easy – look at the edges from vertex-vertices to edge-
vertices and orient them according to the flow.

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

The max result can be 𝑚𝑛 . So we call max-flow 𝒪(log𝑚) times.

What algorithm to use for max-flow and what is the runtime?

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

In the flow network there are 𝑛 + 𝑚 + 2 = 𝒪(𝑚) vertices and 𝑛 + 3𝑚 = 𝒪(𝑚)
edges.

The maximum flow can be of the order 𝒪(𝑚).

The bound from Ford-Fulkerson is 𝒪(𝑚2) which is as good as the previous
solution (but is slower in practice).

Normal analysis of Dinitz is no better, but a careful analysis gives a better
bound.

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

Each augmenting path in the graph is essentially as if we were computing a
half-matching, where vertices on the left can be matched to more than one.

Every path in a blocking flow is alternating, it starts from a vertex on the left
that has not yet matched 𝑑 vertices, alternates picked and unpicked edges in
the middle, and finishes with a yet-unmatched vertex on the right.

This gives us the same analysis as for Hopcroft-Karp.

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

After 𝑘 blocking flows the length of the shortest augmenting path is at least 𝑘 +
1.

After √𝑚 − 1 blocking flows the shortest augmenting path is √𝑚.

Because there’s at most √𝑚 disjoint paths of length √𝑚 that is the maximum
number of additional phases. So the number of total phases is 𝒪(√𝑚).

We get 𝒪(𝑚√𝑚).

Combined with the binary search we have 𝒪(𝑚√𝑚 log(𝑚)).

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

After 𝑘 blocking flows the length of the shortest augmenting path is at least 𝑘 +
1.

After √𝑚 − 1 blocking flows the shortest augmenting path is √𝑚.

Because there’s at most √𝑚 disjoint paths of length √𝑚 that is the maximum
number of additional phases. So the number of total phases is 𝒪(√𝑚).

We get 𝒪(𝑚√𝑚).

Combined with the binary search we have 𝒪(𝑚√𝑚 log(𝑚)).

And this is still too slow!

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

That flow is sufficient for many graphs, but not if the solution really is close to
𝑚.

An example of such a graph is an 𝑘-times-clique, i.e. we take a complete graph
and duplicate all the edges 𝑘 times. There are 𝑘 𝑛(𝑛−1)2 edges in such a graph and
the best orientation is 𝑘(𝑛−1)2 .

Considering duplicates of the same edge is actually wasteful…

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

AACPP 2025 Mateusz Gienieczko

LUC – Luck of the Paw

We can now also bound the size of the network by 𝒪(𝑛2).

Since the size of the result is larger the denser the graph is, this is a meaningful
improvement.

E.g. a clique on 316 vertices has almost 105 edges, yet the result is bounded by
158.

A clique on 79 vertices where each edge is duplicated 16 times has a result
bounded by 640, but the entire flow network has only 6 214 vertices.

So we have 𝒪(𝑛3) when the graph is dense.

The previous bound of 𝒪(𝑚√𝑚) also holds, and in a sparse graph 𝑚𝑛 is very low.
AACPP 2025 Mateusz Gienieczko

Recall the plan

• Greedy and dynamic programming (DP)
• Trees
• Graphs
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
• Ways to run DP on graphs (Toposort)
• Advanced graph algorithms (Matchings, flows)
• Binary Search Trees ← we are here
• Number theory
• String algorithms (KMP, tries, suffix tables)
• Some problems can’t* even be solved efficiently (NP-completeness)

AACPP 2025 Mateusz Gienieczko

BST – General idea

We want to store keys ordered by some total order.

Organise them into a binary tree where, if a node has key 𝑘, then every key in
the left subtree is < 𝑘 and every key in the right subtree is ≥ 𝑘.

Searching for a key we always know where to go.

Search time is 𝒪(depth).

AACPP 2025 Mateusz Gienieczko

BST – General idea

AACPP 2025 Mateusz Gienieczko

BST – General idea

AACPP 2025 Mateusz Gienieczko

BST – Lookup

fn lookup(node, key)

 if node.key == key

 return node

 else if node.key <= key

 if node.right is None { return None }

 else

 return lookup(node.right, key)

 else

 if node.left is None { return None }

 else

 return lookup(node.left, key)

AACPP 2025 Mateusz Gienieczko

BBST

A balanced binary search tree is one where the depth is 𝒪(log 𝑛) for 𝑛 keys.

The search time is always logarithmic then.

The challenge is how to perform key insertion to maintain the balance.

AACPP 2025 Mateusz Gienieczko

BBST

AACPP 2025 Mateusz Gienieczko

BBST

AACPP 2025 Mateusz Gienieczko

BST – AVL

Adelson-Velsky and Landis trees maintain an invariant the the difference
between the heights of two siblings is at most one.

The tree needs to maintain the height difference, which takes 2 bits of memory
per node.

Rebalancing is done via tree rotations.

All operations are 𝒪(log 𝑛) (a tree of height ℎ has at least Fℎ+2 - 1 nodes³).

³𝐹𝑛 is the 𝑛-th Fibonacci number.
AACPP 2025 Mateusz Gienieczko

BST – AVL

AACPP 2025 Mateusz Gienieczko

BST – AVL

AACPP 2025 Mateusz Gienieczko

BST – AVL insertion

AACPP 2025 Mateusz Gienieczko

BST – AVL insertion

AACPP 2025 Mateusz Gienieczko

BST – AVL balancing (left rotation)

AACPP 2025 Mateusz Gienieczko

BST – AVL balancing (left rotation)

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree

Red-black trees are memory-efficient BSTs that require only one bit to specify
colour of a node – red or black.⁴

Balance is maintained with a couple of invariants, rotations and recolourings:
• A null node is black;
• A red node does not have a red child
• Every path from a node to any of its leaf nodes goes through the same

number of black nodes.

⁴Interesting fact – RB trees are inspired by 2-3-4 trees invented by Rudolf Bayer. Prof. Bayer
is a professor emeritus at our database chair 😄 He also co-invented B-trees.
AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree

Based on the invariants, the path to the deepest leaf is at most two times the
path to any leaf.

More precisely, the black-height – height counting only black nodes – is at least
half of the total height.

We get 𝒪(log 𝑛) operations.

RB trees are on average deeper and slower than AVLs, but they require less
memory (1 bit per node instead of 2 bits).

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree (red violation)

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree (red violation)

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree (red violation)

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree (red violation)

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree (red violation 2)

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree (red violation 2)

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree (red&black violation)

AACPP 2025 Mateusz Gienieczko

BST – Red-Black Tree

AACPP 2025 Mateusz Gienieczko

BST – Splay

Splay is a BST that is fast in practice – it tries to keep frequently accessed
nodes close to the root.

Its runtime is amortised 𝒪(log 𝑛) for access and update.

It’s based on a splay operation which pushes a node upwards until it becomes
the root.

AACPP 2025 Mateusz Gienieczko

BST – Splay (insertion)

AACPP 2025 Mateusz Gienieczko

BST – Splay (insertion)

AACPP 2025 Mateusz Gienieczko

BST – Splay (zag-zig)

AACPP 2025 Mateusz Gienieczko

BST – Splay (zag-zag)

AACPP 2025 Mateusz Gienieczko

BST – Splay split/join

The cool part of splay trees is that we can easily join two splays or split a splay
on a given key.

This then allows us to implement all other operations based on join and split.

• Insert – split on the key, create a new node as the root.
• Delete – splay the node to the top, remove it, join its children.

AACPP 2025 Mateusz Gienieczko

BST – Splay (join)

AACPP 2025 Mateusz Gienieczko

BST – Splay (join)

AACPP 2025 Mateusz Gienieczko

BST – Splay (join)

AACPP 2025 Mateusz Gienieczko

BST – Splay (join)

AACPP 2025 Mateusz Gienieczko

BST – Treap

A treap is a hybrid of a tree and a heap.

It’s based on the following fact:

A random binary tree of 𝑛 nodes has height 𝒪(log 𝑛).

We maintain a BST, but also assign pseudorandom weights to each node and
maintain the heap invariant (children’s weight does not exceed the parent’s).

It can be proven that this gives average lookup and insertion of 𝒪(log 𝑛).

AACPP 2025 Mateusz Gienieczko

BST – Treap

AACPP 2025 Mateusz Gienieczko

BST – Treap

AACPP 2025 Mateusz Gienieczko

BST – Treap

AACPP 2025 Mateusz Gienieczko

BST – Treap

AACPP 2025 Mateusz Gienieczko

BST – Treap

AACPP 2025 Mateusz Gienieczko

BST – Augmenting BSTs

BSTs can be augmented with additional information.

We can associate arbitrary values with the keys, creating a map.

Furthermore, we can maintain aggregates.

For example, sum of values in a subtree – this allows us to query for the sum of
values for all keys in a range [𝑥, 𝑦] with two queries in logarithmic time:

sum([𝑥, 𝑦]) = sum([..𝑦]) − sum([..𝑥))

AACPP 2025 Mateusz Gienieczko

BST – Augmenting BSTs

In general, any value that is associative can be maintained, i.e.

(𝑥 ⊕ 𝑦) ⊕ 𝑧 = 𝑥 ⊕ (𝑦 ⊕ 𝑧)

Sums, products, min/max, XOR, etc.

AACPP 2025 Mateusz Gienieczko

BST – Implementation notes

Many BSTs can be implemented using an array, i.e:
• create a static array of 𝑛 nodes that can be null;
• make the root always node 1;
• the left and right child pointers are indices into the array where the node is.

This doesn’t require dynamic allocations, but it also always consumes all the
memory for 𝑛 nodes even if fewer are actually required (good for conpra,
questionable in practice).

AACPP 2025 Mateusz Gienieczko

BST – Implementation notes

The standard way:

type NodePtr = Option<Box<Node>>;

struct Node {

 left: NodePtr,

 right: NodePtr,

 key: K,

 value: V

}

class Node {

 std::unique_ptr<Node> left;

 std::unique_ptr<Node> right;

 K key;

 V value;

};

AACPP 2025 Mateusz Gienieczko

BST – Segment trees

A segment tree is a search tree specialised for maintaining aggregates on
segments.

The root contains aggregates for the segment [1, 𝑛].

Children of a node [𝑥, 𝑦] contain the aggregates for [𝑥, ⌊𝑦2 ⌋] on the left and
(⌊𝑦2 ⌋, 𝑛] on the right.

Leaves contain point aggregates [𝑥, 𝑥].

AACPP 2025 Mateusz Gienieczko

BST – Segment trees

We don’t need a complex structure for those nodes – a single array of length 2𝑛
suffices.

Root is 1. The left child of 𝑥 is 2𝑥 . The right child is 2𝑥 + 1.

Nodes from 𝑛 to 2𝑛 − 1 are leaves.

AACPP 2025 Mateusz Gienieczko

BST – Segment trees

Both query and update can be range-based or it can be point-based.

We get three different kinds of trees based on query-update type:
point-range, range-point, range-range.

The point-based once are a bit easier and more lightweight.

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (point query)

fn query(q)

 query_at(q, 1, 1, n)

fn query_at(q, node, n_from, n_to)

 if n_from == n_to

 return tree[node]

 mid = midpoint(n_from, n_to)

 if q < mid

 return query_at(q, 2 * node, n_from, mid)

 else

 return query_at(q, 2 * node + 1, mid + 1, n_to)

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (point query)

fn query(q)

 query_at(q, 1, 1, n)

fn query_at(q, node, n_from, n_to)

 if n_from == n_to

 return tree[node]

 mid = midpoint(n_from, n_to)

 if q < mid

 return query_at(q, 2 * node, n_from, mid)

 else

 return query_at(q, 2 * node + 1, mid + 1, n_to)

Point update is analogous.
AACPP 2025 Mateusz Gienieczko

BST – Segment trees (range query)

fn query_at(q_from, q_to, node, n_from, n_to)

 if q_from == n_from and q_to == n_to

 return tree[node]

 mid = midpoint(n_from, n_to)

 agg = 0

 if q_from < mid

 agg ⊕= query_at(q_from, min(q_to, mid), 2 * node, n_from, mid)
 if q_to >= mid

 agg ⊕= query_at(max(q_to, mid), q_to, 2 * node + 1, mid + 1, n_to)
 return agg

AACPP 2025 Mateusz Gienieczko

BST – Pushdown values

To facilitate range-range trees we need pushdown values.

The problem is that we need to apply the update on all nodes in the range, but
a query might not overlap exactly with the nodes of the update.

E.g an update on [1, 𝑛] would touch only the root normally, while a query [2, 2]
aggregates only from one node.

Instead, we lazily apply values in top nodes and then push down whenever we
touch them.

This can be applied to normal BSTs as well (see e.g. RAI from last year).

AACPP 2025 Mateusz Gienieczko

BST – Pushdown values (range update)

fn update_at(q_from, q_to, node, n_from, n_to, value)

 if q_from == n_from and q_to == n_to

 pushdown[node] ⊕= value
 mid = midpoint(n_from, n_to)

 if n_from < mid

 update_at(q_from, min(q_to, mid), 2 * node, n_from, mid, value)

 else

 update_at(max(q_to, mid), q_to, 2 * node + 1, mid + 1, n_to, value)

AACPP 2025 Mateusz Gienieczko

BST – Pushdown values (range query)

fn push_down(node, n_from, n_to)

 tree[node] ⊕= pushdown[node] * (n_to - n_from + 1)
 if n_from != n_to

 pushdown[2 * node] ⊕= pushdown[node]
 pushdown[2 * node + 1] ⊕= pushdown[node]
 pushdown[node] = 0

fn query_at(q_from, q_to, node, n_from, n_to, value)

 push_down(node, n_from, n_to)

 // rest of the code the same as in normal range query

AACPP 2025 Mateusz Gienieczko

BST – Segment trees

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (update [3, 7] + 7)

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (update [2, 16] + 6)

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees (query ∑[4, 6])

AACPP 2025 Mateusz Gienieczko

BST – Segment trees analysis

Point queries and updates are straightforwardly logarithmic.

For a range query/update one can observe that we will stop in at most two
nodes at each depth.

Pushdown values add a constant overhead to both.

AACPP 2025 Mateusz Gienieczko

BST – Dynamic segment trees

Sometimes 𝑛 is too large to materialise the entire tree.

One can create nodes dynamically when they are needed.

The root always exists, when we want to go to a child we first check if it exists
and create it if not.

That way our memory usage increases by 𝒪(log(𝑛)) at each update/query.

AACPP 2025 Mateusz Gienieczko

BST – Multi-dimensional segment trees

Segment trees generalise to hyperrectangles in multi-dimensional spaces.

The idea is that we have the top-level segment tree that holds other segment
trees in each node.

For example, the node for [5, 8] holds a segment tree for all rectangles whose 𝑋 -
axis dimension is exactly [5, 8].

When trying to update or query a value in a node in the top-level tree we go
into its tree and run the update/query on that tree on the second dimension.

This generalises to 𝑘 dimensions with even more nested trees.

The time becomes 𝒪(log𝑘 𝑛). Dynamic allocation is basically necessary.
AACPP 2025 Mateusz Gienieczko

B-trees

B-trees are a fundamental search structure in database indices.

They don’t really apply in competitive programming, but we’re the database
chair so it’d be weird to not even mention them.

In a B-tree of order 𝑚:

• a non-leaf node (called internal) with 𝑘 children has 𝑘 − 1 keys.
• every internal node has between ⌊𝑚2 ⌋ and 𝑚 children;
• all leaves have the same depth;

In short, they’re search trees where nodes hold more than 2 children so you
need to search through the node’s keys to know where to recurse.
AACPP 2025 Mateusz Gienieczko

B-trees

The tree is balanced with splits, joins, and rotations.

When inserting into a node would make it contain 𝑚 keys, it is split into two
siblings and the midpoint is inserted as a key to the parent.

When deleting two siblings are joined if they have fewer than ⌊𝑚2 ⌋ nodes.
Otherwise, one key can be moved from one to the other through the parent.

AACPP 2025 Mateusz Gienieczko

B-trees

B-trees are used in databases by setting the order such that a single node’s data
fits into one filesystem page.

This is because database accesses are⁵ I/O bound, and disk I/O always happens
in full pages.

Databases often utilise B+-trees, which only store full values in leaves while
internal nodes maintain keys for navigation and oftentimes aggregates.

⁵Well, were, historically. The landscape now is much more complex, and you can learn
about it more by e.g. writing your thesis with us 😀. The B-tree remains a good choice but
now due to cache misses in main memory.
AACPP 2025 Mateusz Gienieczko

See you next week

PSS and BUR: 01.07.2025,
10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

	AACPP 2025
	Week 7: Binary Search Trees

	Fifth round – survey
	Course Evaluation
	Sixth round
	GRR – Garden Road Routine
	GRR – Garden Road Routine
	GRR – Garden Road Routine
	GRR – Garden Road Routine
	GRR – Garden Road Routine
	GRR – Garden Road Routine
	GRR – Garden Road Routine
	GRR – Garden Road Routine
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	LUC – Luck of the Paw
	Recall the plan
	BST – General idea
	BST – General idea
	BST – Lookup
	BBST
	BBST
	BST – AVL
	BST – AVL
	BST – AVL insertion
	BST – AVL balancing (left rotation)
	BST – Red-Black Tree
	BST – Red-Black Tree
	BST – Red-Black Tree
	BST – Red-Black Tree (red violation)
	BST – Red-Black Tree (red violation)
	BST – Red-Black Tree (red violation)
	BST – Red-Black Tree (red violation)
	BST – Red-Black Tree (red violation 2)
	BST – Red-Black Tree (red violation 2)
	BST – Red-Black Tree (red&black violation)
	BST – Red-Black Tree
	BST – Splay
	BST – Splay (insertion)
	BST – Splay (insertion)
	BST – Splay (zag-zig)
	BST – Splay (zag-zag)
	BST – Splay split/join
	BST – Splay (join)
	BST – Splay (join)
	BST – Splay (join)
	BST – Splay (join)
	BST – Treap
	BST – Treap
	BST – Treap
	BST – Treap
	BST – Treap
	BST – Treap
	BST – Augmenting BSTs
	BST – Augmenting BSTs
	BST – Implementation notes
	BST – Implementation notes
	BST – Segment trees
	BST – Segment trees
	BST – Segment trees
	BST – Segment trees (point query)
	BST – Segment trees (range query)
	BST – Pushdown values
	BST – Pushdown values (range update)
	BST – Pushdown values (range query)
	BST – Segment trees
	BST – Segment trees (update [3, 7] + 7)
	BST – Segment trees (update [2, 16] + 6)
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees (query ∑ [4, 6])
	BST – Segment trees analysis
	BST – Dynamic segment trees
	BST – Multi-dimensional segment trees
	B-trees
	B-trees
	B-trees
	See you next week

