School of Computation, Information and Technology
Technical University of Munich

AACPP 2025

Week 2: Tackling a Problem

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.05.13

AACPP 2025

Mateusz Gienieczko



First two problems

First deadline — 13.05.2025, 10:00 AM.

Try to get non-zero number of points :)

AACPP 2025




Mattermost reminder TUTI

Official Mattermost

Mateusz Gienieczko


https://mattermost.db.in.tum.de/signup_user_complete/?id=mgqbodh5riyhtpku5in4tfeswe&md=link&sbr=su

Theses! B.Sc.! M.Sc.!

We do databases and data processing.

Fast.

C++ or Rust.

https://db.in.tum.de/research
https://db.in.tum.de/people/sites/gienieczko/

https://db.in.tum.de/people/sites/morozov/

AACPP 2025


https://db.in.tum.de/research
https://db.in.tum.de/people/sites/gienieczko/
https://db.in.tum.de/people/sites/morozov/

The Hard Part TUTI

« Greedy and dynamic programming (DP)

« Trees

« Graphs

« Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
« Ways to run DP on graphs (Toposort)

« Advanced graph algorithms (Matchings, flows)

« Binary Search Trees

« Number theory

o String algorithms (KMP, tries, suffix tables)

Some problems can’t even be solved efficiently (NP-completeness)

AACPP 2025 Mateusz Gienieczko



The Hard Part

AACPP 2025

How to decide what tools to use?



Example: XAP TUTI

Task: XAP
Experimental Assault Pigeons TI-ITI

AACPP SuSe 2024 Round 2 Memory: 32MiB (Java: 128MiB) 2024.05.28 - 2024.06.11

After helping with the Universal Signalling System, Byteman has been promoted higher in the
ranks of Byteland’s IT Task Force and is now overseeing the computerised mission control
system for the Bytelandian Air Force. The hottest innovation in aerial operations? Pigeons.

BAF wants to use specially trained pigeons for its experimental Rapid Aerial Payload De-
livery programme. In theory they could be used to deliver messages, electronic interference
devices, small explosives, or smaller military animals?, while remaining undetected in enemy
territory. This “undetected” part is Byteman’'s assignment right now — he needs to help XAP
units evade radar.

Byteman has access to a training area simulating the territory to inflitrate. From a bird’s
eye view, the area is a rectangular 2D grid divided into three areas along the X axis. The top
and bottom area spanning y values [0, 100] and [w + 100, w + 200] are radar arrays — there are

AACPP 2025 Mateusz Gienieczko



Example: XAP TUTI

n radars in total, and each has a circular detection radius. The edge of the detection range
is still dangerous and can detect a pigeon. The flight path is restricted to the middle area of
width w. The pigeons start at z = 0 and any y € (100, w + 100), while its goal is to reach l on
the X axis. The third dimension does not matter — the radars’ operating range is much higher
than the maximum altitude of any pigeon.

Fortunately, unlike regular pigeons, the XAP units are smart and agile fliers. They can turn
sharp angles in an instant to evade radar detection - their trajectory forms an arbitrary
polygonal chain. The catch is that a well-designed radar network might make navigating
through the entire territory impossible. XAP units might require preliminary strikes —a number
of radars to be taken down before the operation begins. To make operations cost-effective,
though, the BAF wants to minimise the number of destroyed radars.

AACPP 2025 Mateusz Gienieczko



Example: XAP

AACPP 2025

Input
In the first line of standard input there are three integers n, w, [, in order: the number of radars,
the width of the middle area, and the target = coordinate.

The next n lines contain the description of the radar system. In the i-th line there are three
integers, z;,y;,r;, describing the coordinates of the i-th radar and its detection radius, re-
spectively.

There is always at least two radars, one in each array. The x coordinates are always between
0 and [, whereas the y coordinates are always in [0,100] U [w + 100, w + 200].

Output

Your program should output two lines. The first line should contain one integer0 < k< n -
the minimal number of radars that have to be removed to clear a valid flight path.
In the next line there should be k£ unique integers between 1 and n, denoting which of the
radars need to be destroyed, in ascending order. If kK = 0 then the line must be left blank.
While the minimal k is well defined, there might be more than one correct set of radars of
size k that can be destroyed. Your program may output any of them.

Mateusz Gienieczko



Example: XAP

AACPP 2025

Example
For the input:

7 200 700

175
362
548
100
294
456
553

one of the correct outputs is:

2
2 6

88 100
44 200
88 125
312 62
312 106
308 127
326 88

w4100 -o-----

'

100 200 300 400 \5m\7ﬂ_/mu/ 700 ‘
Figure 1: Test setup with 3 radars in the lower and 4 in the upper area.
There is no clear path through the radars.

Mateusz Gienieczko



Example: XAP

w100 -o---- IS GORITUELTURESS -ELCEEREREREY SERRS A

e
>
x

100 200 300 To0

Figure 2: Two destroyed radars (2 and 6) clear the flight path (in blue).

AACPP 2025

w100 -4-----

'

x B

100

200

300

40

500

GO0

i

700

Figure 3: Alternative correct solution where radars 2 and 3 are destroyed.

Mateusz Gienieczko



Example: XAP

AACPP 2025

Limits
Your solution will be evaluated on a number of hidden test cases divided into groups. Points
for a group are awarded if and only if the submission returns the correct answer for each of
the tests in the group within the allotted time limit. These groups are organised into subtasks
with the following limits and points awarded.

In all tests each radar radius is limited by 10,000.

Partial points
If your solution outputs the correct number of radars (first line of output), and the second
line is left blank or not correct, it will receive 50% of the points for a given test group.

Subtask Limits Points

1. 2<n<20,1<w<800,1<1<1,000 2

2<n<40,1 <w<800,1<1<4,000

2 2
3. 2<n<1,000,1<w<800,1<I< 25000 4
4 2 <n <5000 1<w<2500,1<I< 40,000 2

Mateusz Gienieczko



Simplify

What if radars are only on one side?

AACPP 2025



Simplify

What if radars are only on one side?

When are they on both sides but answer is 07

AACPP 2025



Simplify

What if radars are only on one side?
When are they on both sides but answer is 07

Simplest case where answer is 17

AACPP 2025



Formal characterisation TUTI

w+100 ------

(O
o
A

1) T O SECIECTTE! REFRRRES

1(-]{] 2[l][l 3[3'0 4(.][1 5[-)0 600 T00

AACPP 2025 Mateusz Gienieczko



Formal characterisation

Remove minimal number of vertices to remove all edges.

Minimal Vertex Cover in a bipartite graph.

AACPP 2025



Oh no it doesn’t work

If it doesn’t work on example or your manual tests — good!

What if we don’t have a counterexample?

AACPP 2025



Proving correctness TUTI

Sometimes solution doesn’t work fundamentally.

Sometimes it’s a coding bug,.

Hard to find a bug if you're not sure that your solution is supposed to work.

AACPP 2025



Usual approach - vibes well means it works TUTI

Quite useful for competitive programming where time is limited.

Dangerous, greedy solutions often vibe well but might not work.

AACPP 2025



At least try to prove it to yourself

Often you’ll talk yourself into a counterexample.

... or maybe it actually works conceptually and then you need to debug.

AACPP 2025



Generating tests

Random tests are usually poor quality.

AACPP 2025



Generating tests

Random tests are usually poor quality.
BUT

We can generate a lot of them.

AACPP 2025



Output? TUTI

Sometimes it’s possible to generate a test for a given output, but not always.

Brute-force solutions to compare against.

AACPP 2025 Mateusz Gienieczko



XAP brute force

Just select a subset to circles to remove and check if it works.

Go over all subsets.

@(2”112), but it works for subtask 1.

Generate tests with n < 20.

AACPP 2025



Debugging

USE A DEBUGGER.

If you're already using one, good, keep doing so.

AACPP 2025



Debugging

USE A DEBUGGER.
If you're already using one, good, keep doing so.

If not and you like vim you will also like gdb.

AACPP 2025



Debugging

USE A DEBUGGER.
If you're already using one, good, keep doing so.
If not and you like vim you will also like gdb.

Otherwise, use an IDE. CLion is really good.

AACPP 2025



Printf debugging

Slapping some print statements to print variables and overall flow of the

program.

Actually pretty effective in competitive programming.

AACPP 2025



Real Life TUTI

Coding solutions for competitive programming is different than actual coding.

AACPP 2025 Mateusz Gienieczko



Real Life TUTI

Coding solutions for competitive programming is different than actual coding.

BUT

it is very educational!

AACPP 2025



Testing

Random tests are generally bad, but fuzzing is an important technique.

Widely used in production software.

AACPP 2025



Debugging

Duh.

AACPP 2025



Debugging

Duh.

Print debugging as well, we just call it “structured logging” to sound

professional.

AACPP 2025



Complexity

No one will ask you to prove complexity at a Real Job™...

AACPP 2025



Complexity

No one will ask you to prove complexity at a Real Job™...
BUT
they will ask “will this work if we have a million entries”.

a treat tastier than the previous one

AACPP 2025



Problem solving TUTI

We have a giant toolbox at our disposal and a problem to solve.

Usually not as well defined, but translating requirements to something sensible
is similar.

The main difference is there is no judging system.

AACPP 2025



Problem solving TUTI

We have a giant toolbox at our disposal and a problem to solve.

Usually not as well defined, but translating requirements to something sensible
is similar.

The main difference is there is no judging system.

Try not to solve tasks by a thousand resubmissions, for your own sake.

AACPP 2025 Mateusz Gienieczko



Various tips and tricks

C++: Don’t use <iostream>, or at least sync_with_stdio(false).

AACPP 2025



Various tips and tricks

When reading to a Vec or std: :vector, reserve the capacity first.

Rust: Cors:

std: :vector<SomeType> v{};

let v = Vec::with_capacity(n);
—cab y(n) v.reserve(n);

AACPP 2025



Various tips and tricks

Remember the relative performance of operations.

AACPP 2025



Various tips and tricks

Remember the relative performance of operations.

On our 32-bit judging platforms int32 ops are faster than int64.
Floating-point operations are slow, usually can be avoided.

Ops on double are much slower than on float.

Division and modulus is slower than multiplication, which is slower than
addition.

AACPP 2025



Various tips and tricks

Standard library functions are usually much faster than your own
implementations.

As true here as it is in Real Life™,

Also less buggy :)

AACPP 2025



Basic algorithms and data structures

Sorting.

Stacks, queues, deques.
Heaps (priority queues).
Divide and conquer.

b

“Two pointers” or “the caterpillar”.

AACPP 2025



Divide and conquer general scheme

Divide a big instance into smaller subproblems.
Solve subproblems independently.
Combine the results.

E.g. merge sort.

AACPP 2025



Divide and conquer example TUM

Task

Dexter received a new treat in form of a stick divided into n segments. Some parts
are tastier than others and some are not tasty at all. Dexter wants to eat the tastiest
bits first, but he can only eat segments adjacent to each other. Help him decide
which segments to eat to maximise tastiness.

Example

7
5-724-16 -3

11

AACPP 2025 Mateusz Gienieczko



Divide and conquer example TUM

Divide the array in “half”.

The optimal result is either
o fully in the left part,

o fully in the right part,

- between the parts.

We obtain the first two via recursion, and the other can be computed in O(n).

Base case of n = 1 is trivial.

AACPP 2025



Divide and conquer example

left = [5, -7, 2], right = [4, -1, 6, -3]

Optimal in left is 5, optimal in right is 9.

Compute prefix sums in right and suffix sums in left:
lefts = [0, -5, 2], rights = [4, 3, 9, 6]

Best choice for in-between solution is 11.

AACPP 2025



Time complexity

At every level we do O(n) work.
Every recursion divides the size in half.

n n n n n n n .
n+2+2+4+4+4+4—|—8...—®(n10gn)

AACPP 2025



Common D&C: binary search TUTI

Basic case: we have a sorted array and want to find an element x.
[3, 7, 7, 9, 11, 23, 100]

Check the middle element — if greater than x then x can only be in the left half.
Otherwise, in the right.

Standard libraries have implementations already, slice: :binary_search in Rust
and std: :lower_bound/std: :upper_bound in C++.

AACPP 2025



Generic binary-search TUT

Binary search finds the critical point of any binary monotonic function.

The general property of: If element at index i satisfies the condition, then the one

ati+ 1 also does.

AACPP 2025



Binary-search example TUTI

Dexter found a cat lottery! There are n prizes, where i-th prize is a batch of i treats.
To enrol Dexter needs to buy (with his own treats) 1 lot for the first prize, 2 lots for
the second price, etc., up ton lots for the n-th prize. Each lot has equal probability
of winning, but to get treat i you need all i lots to win. Given value a; of each of the
treats and the number b of treats Dexter has, help him decide what is the minimum
probability (with 107 accuracy) of a lot winning that makes entering worth it.

33
1510

0.5

AACPP 2025 Mateusz Gienieczko



Binary-search example

For a given probability p the expected payoff E(p) is:

This has to be at most b.
This condition is monotonic: E(p) > b = E(p +¢) > b.

Binary-search for the probability after adjusting to integers.

AACPP 2025



Two pointers / Caterpillar

Go through a sequence S keeping two pointers i, j, j > i.
The currently considered subsequence is S|i..j].
Both pointers advance forward.

Common pattern in solutions.

AACPP 2025



Two pointers example TUTI

Dexter the Cat wants to open an account at Fressnapf to order his own treats on
Mat’s credit card he found on the table. While he is very smart, his little paws are
made to maximise cuteness, not to use a keyboard. To create a password he
stomped around and got a long and strong password but, of course, the site has
some silly requirements on “complexity”. They require that each prefix of the
password has at most k more capital letters than small letters. Dexter can now
remove some letters from the beginning and the end, but not the middle. Help
Dexter obtain the longest valid password and get his treats!

3
BBcDEX1olDEX

9

AACPP 2025 Mateusz Gienieczko



Two pointers example

We maintain a subsequence that is valid, starting withi = j = 0.
Try to extend by moving j forward.

If condition is violated, move i forward until it’s not.
Maintaining the count difference is easy.

Since both pointers move at most n times we have O(n).

AACPP 2025



See you next week TUTI

Z00 and TOY: 13.05.2025,
10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko



	AACPP 2025
	Week 2: Tackling a Problem

	First two problems
	Mattermost reminder
	Theses! B.Sc.! M.Sc.!
	The Hard Part
	The Hard Part
	Example: XAP
	Example: XAP
	Example: XAP
	Example: XAP
	Example: XAP
	Example: XAP
	Simplify
	Formal characterisation
	Formal characterisation
	Oh no it doesn't work
	Proving correctness
	Usual approach – vibes well means it works
	At least try to prove it to yourself
	Generating tests
	Output?
	XAP brute force
	Debugging
	Printf debugging
	Real Life
	Testing
	Debugging
	Complexity
	Problem solving
	Various tips and tricks
	Various tips and tricks
	Various tips and tricks
	Various tips and tricks
	Basic algorithms and data structures
	Divide and conquer general scheme
	Divide and conquer example
	Task
	Example

	Divide and conquer example
	Divide and conquer example
	Time complexity
	Common D&C: binary search
	Generic binary-search
	Binary-search example
	Binary-search example
	Two pointers / Caterpillar
	Two pointers example
	Two pointers example
	See you next week

