
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 1: Basics

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.04.29

AACPP 2025 Mateusz Gienieczko

Structure of the course

Weekly meetings here, Tuesdays, 10:00.

We will focus on explaining solutions to tasks.

Then a short introduction of the new topic and tasks.

AACPP 2025 Mateusz Gienieczko

Grading

We plan 𝟏𝟓 tasks, each for 10 + 10 points.

Up to two tasks published per week.

First week points count double.

Expect 151 points to pass.

AACPP 2025 Mateusz Gienieczko

Sign up!

https://nextcloud.in.tum.de/index.php/s/MkipmSfsp3Yws2T

AACPP 2025 Mateusz Gienieczko

https://nextcloud.in.tum.de/index.php/s/MkipmSfsp3Yws2T

Problem statements

Always read the problem statement carefully.

The Main section contains the actual problem to be solved.

Input contains formal input description.

Output contains formal output specification.

Limits set the size parameters of the task.

AACPP 2025 Mateusz Gienieczko

Evaluation

You upload a single file in .rs, .cpp, or .c.

It gets compiled and ran on multiple test cases.

Your program must read from standard input and write to standard output.

Your output is checked for correctness.

The environment is constraint wrt. capabilities, time, and memory.

AACPP 2025 Mateusz Gienieczko

Main section

Translate from author’s imagination into a more formal version.

We’ll be talking about this extensively next week.

AACPP 2025 Mateusz Gienieczko

Input

All test cases conform to the formal input description in the test.

Always assume the input is correct (in the sense described in the Input section).

Read from standard input.

AACPP 2025 Mateusz Gienieczko

Input example (Rust)

use std::io::BufRead;

let mut stdin = std::io::stdin().lock().lines();

let line = stdin.next().expect("line")?;

let mut parts = line.split(' ');

let r: u32 = parts.next().expect("r")?.parse()?;

let c: u32 = parts.next().expect("c")?.parse()?;

AACPP 2025 Mateusz Gienieczko

Input example (C++/C)

uint32_t r, c;

scanf("%d %d", &r, &c);

AACPP 2025 Mateusz Gienieczko

Output

Your output must conform strictly to the format.

The only allowed difference is trailing whitespace.

AACPP 2025 Mateusz Gienieczko

Output example (Rust)

let result = r * c;

println!("{result}");

AACPP 2025 Mateusz Gienieczko

Output example (C++/C)

uint32_t result = r * c;

printf("%d", result);

AACPP 2025 Mateusz Gienieczko

Examples

Each task contains at least one example of valid input and a correct answer.

They’re unlikely to be interesting, they’re a smoke test.

AACPP 2025 Mateusz Gienieczko

Ok, let’s submit

The system: https://aacpp.db.in.tum.de/c/aacpp-suse-2025.

All submissions happen through the system.

All submissions are automatically judged.

AACPP 2025 Mateusz Gienieczko

https://aacpp.db.in.tum.de/c/aacpp-suse-2025

Limits

Limits are very important.

They hint at the complexity of the correct solution.

AACPP 2025 Mateusz Gienieczko

Scoring

Tests are grouped.

E.g. 1a, 1b, 1c are all in the same group.

You get points for a group if all tests in the group are OK.

AACPP 2025 Mateusz Gienieczko

System constraints – capabilities

Syscalls are heavily restricted.

No filesystem.

No network.

No threading.

Only the standard library.

AACPP 2025 Mateusz Gienieczko

System constraints – memory

The judging system imposes a strict memory limit, given in the task.

Going above the limit immediately ends execution and results in MLE.

AACPP 2025 Mateusz Gienieczko

System constraints – time

Execution time is measured with a virtual clock.

Instructions are treated as if executing on a 2GHz CPU.

Exceeding the max time results in a TLE.

AACPP 2025 Mateusz Gienieczko

Estimating resource consumption

Your good friend the 𝒪 notation (also 𝑜 and Ω).

Asymptotic limit on time or memory.

For example, if runtime is 𝒪(𝑓 (𝑛)) then it performs at most 𝑐𝑓 (𝑛) operations for
any input of size 𝑛 for some 𝑐 ∈ ℕ.

AACPP 2025 Mateusz Gienieczko

Estimating running time

A 2GHz CPU can technically perform two billion operations per second.

However, even a simple loop adding from 0 to 109 takes 3 seconds.

In practice, we’re aiming for ≈ 1 to 10 seconds of execution, depending on how
complex the operations are.

We choose time limits wrt. our model solutions.

AACPP 2025 Mateusz Gienieczko

Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
•
•
•
•
•

AACPP 2025 Mateusz Gienieczko

Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
•
•
•
•

AACPP 2025 Mateusz Gienieczko

Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
• 𝑛 ≤ 104: target 𝒪(𝑛2)
•
•
•

AACPP 2025 Mateusz Gienieczko

Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
• 𝑛 ≤ 104: target 𝒪(𝑛2)
• 𝑛 ≤ 100: target 𝒪(𝑛3)
•
•

AACPP 2025 Mateusz Gienieczko

Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
• 𝑛 ≤ 104: target 𝒪(𝑛2)
• 𝑛 ≤ 100: target 𝒪(𝑛3)
• 𝑛 ≤ 20: target 𝒪(2𝑛) (220 ≈ 106)
•

AACPP 2025 Mateusz Gienieczko

Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
• 𝑛 ≤ 104: target 𝒪(𝑛2)
• 𝑛 ≤ 100: target 𝒪(𝑛3)
• 𝑛 ≤ 20: target 𝒪(2𝑛) (220 ≈ 106)
• 𝑛 ≤ 10: target 𝒪(𝑛!) (10! ≈ 3.6 ⋅ 106)

AACPP 2025 Mateusz Gienieczko

Memory limits

Memory limits are usually easily estimated based on our code.

Allocating an array of 𝑛 u32 values takes 4𝑛 bytes.

For example for 𝑛 ≤ 106 that array takes 4MB.

There’s some overhead from code and stack.

No separate stack limit.

AACPP 2025 Mateusz Gienieczko

Other formats

Actual competitive programming contests are usually more restricted.

E.g. a round on Codeforces is limited to 120-180 minutes.

Usually no subtasks, penalties for wrong submits (“bombs”).

Team competitive contests where multiple (usually 3) people solve a problemset
with one computer.

AACPP 2025 Mateusz Gienieczko

ICPC

International Collegiate Programming Contest

There’s also GCPC.

There was a group on TUM doing ICPC. They sometimes have posters.

icpc@in.tum.de

AACPP 2025 Mateusz Gienieczko

icpc@in.tum.de

Other contests

Codeforces

LeetCode

TopCoder

SPOJ

CodeChef

CodinGame

CodeWars

CodeCombat
AACPP 2025 Mateusz Gienieczko

https://codeforces.com/
https://leetcode.com/
https://www.topcoder.com/
https://www.spoj.com/
https://www.codechef.com/
https://www.codingame.com/start/
https://www.codewars.com/
https://codecombat.com/

External resources

Introduction to Algorithms (4th ed.), Cormen et al. (The Algorithms Bible)

Algorithms and Data Structures book by the CS department of Virginia Tech

Competitive Programming Resources by Kunal Kushwaha

Programming Challenges: The Programming Contest Training Manual,
Skiena et al.

Competitive Programming book(s) by S. Halim, F. Halim and S. Effendy

Competitive Programming Handbook and others by Antti Laaksonen

AACPP 2025 Mateusz Gienieczko

https://opendsa.cs.vt.edu/ODSA/Books/eu_book/html/index.html
https://github.com/kunal-kushwaha/Competitive-Programming-Resources
https://cpbook.net/
https://cses.fi/book/index.php

Course resources

Official Mattermost

Evaluation system

Course website

AACPP 2025 Mateusz Gienieczko

https://mattermost.db.in.tum.de/signup_user_complete/?id=mgqbodh5riyhtpku5in4tfeswe&md=link&sbr=su
https://aacpp.db.in.tum.de/contest/
https://db.in.tum.de/teaching/ss25/aacpp

	AACPP 2025
	Week 1: Basics

	Structure of the course
	Grading
	Sign up!
	Problem statements
	Evaluation
	Main section
	Input
	Input example (Rust)
	Input example (C++/C)
	Output
	Output example (Rust)
	Output example (C++/C)
	Examples
	Ok, let's submit
	Limits
	Scoring
	System constraints – capabilities
	System constraints – memory
	System constraints – time
	Estimating resource consumption
	Estimating running time
	Time limit rules of thumb
	Memory limits
	Other formats
	ICPC
	Other contests
	External resources
	Course resources

