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Structure of the course

Weekly meetings here, Tuesdays, 10:00.

We will focus on explaining solutions to tasks.

Then a short introduction of the new topic and tasks.
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Grading

We plan 𝟏𝟓 tasks, each for 10 + 10 points.

Up to two tasks published per week.

First week points count double.

Expect 151 points to pass.
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Sign up!

https://nextcloud.in.tum.de/index.php/s/MkipmSfsp3Yws2T
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Problem statements

Always read the problem statement carefully.

The Main section contains the actual problem to be solved.

Input contains formal input description.

Output contains formal output specification.

Limits set the size parameters of the task.
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Evaluation

You upload a single file in .rs, .cpp, or .c.

It gets compiled and ran on multiple test cases.

Your program must read from standard input and write to standard output.

Your output is checked for correctness.

The environment is constraint wrt. capabilities, time, and memory.
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Main section

Translate from author’s imagination into a more formal version.

We’ll be talking about this extensively next week.
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Input

All test cases conform to the formal input description in the test.

Always assume the input is correct (in the sense described in the Input section).

Read from standard input.
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Input example (Rust)

use std::io::BufRead;

let mut stdin = std::io::stdin().lock().lines();

let line = stdin.next().expect("line")?;

let mut parts = line.split(' ');

let r: u32 = parts.next().expect("r")?.parse()?;

let c: u32 = parts.next().expect("c")?.parse()?;
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Input example (C++/C)

uint32_t r, c;

scanf("%d %d", &r, &c);
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Output

Your output must conform strictly to the format.

The only allowed difference is trailing whitespace.
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Output example (Rust)

let result = r * c;

println!("{result}");
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Output example (C++/C)

uint32_t result = r * c;

printf("%d", result);
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Examples

Each task contains at least one example of valid input and a correct answer.

They’re unlikely to be interesting, they’re a smoke test.
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Ok, let’s submit

The system: https://aacpp.db.in.tum.de/c/aacpp-suse-2025.

All submissions happen through the system.

All submissions are automatically judged.
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Limits

Limits are very important.

They hint at the complexity of the correct solution.
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Scoring

Tests are grouped.

E.g. 1a, 1b, 1c are all in the same group.

You get points for a group if all tests in the group are OK.
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System constraints – capabilities

Syscalls are heavily restricted.

No filesystem.

No network.

No threading.

Only the standard library.
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System constraints – memory

The judging system imposes a strict memory limit, given in the task.

Going above the limit immediately ends execution and results in MLE.
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System constraints – time

Execution time is measured with a virtual clock.

Instructions are treated as if executing on a 2GHz CPU.

Exceeding the max time results in a TLE.
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Estimating resource consumption

Your good friend the 𝒪  notation (also 𝑜 and Ω).

Asymptotic limit on time or memory.

For example, if runtime is 𝒪(𝑓 (𝑛)) then it performs at most 𝑐𝑓 (𝑛) operations for
any input of size 𝑛 for some 𝑐 ∈ ℕ.
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Estimating running time

A 2GHz CPU can technically perform two billion operations per second.

However, even a simple loop adding from 0 to 109 takes 3 seconds.

In practice, we’re aiming for ≈ 1 to 10 seconds of execution, depending on how
complex the operations are.

We choose time limits wrt. our model solutions.
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Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
•
•
•
•
•
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Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
•
•
•
•

AACPP 2025 Mateusz Gienieczko



Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
• 𝑛 ≤ 104: target 𝒪(𝑛2)
•
•
•
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Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
• 𝑛 ≤ 104: target 𝒪(𝑛2)
• 𝑛 ≤ 100: target 𝒪(𝑛3)
•
•
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Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
• 𝑛 ≤ 104: target 𝒪(𝑛2)
• 𝑛 ≤ 100: target 𝒪(𝑛3)
• 𝑛 ≤ 20: target 𝒪(2𝑛) (220 ≈ 106)
•
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Time limit rules of thumb

There are rules of thumb on what complexity to target.

If we plug max values into the complexity function we should get around 108.

For example, for input size 𝑛:

• 𝑛 ≤ 106: target 𝒪(𝑛)/𝒪(𝑛 log 𝑛) (log 106 < 20)
• 𝑛 ≤ 105: target 𝒪(𝑛 log2 𝑛)/𝒪(𝑛√𝑛) (√105 < 317)
• 𝑛 ≤ 104: target 𝒪(𝑛2)
• 𝑛 ≤ 100: target 𝒪(𝑛3)
• 𝑛 ≤ 20: target 𝒪(2𝑛) (220 ≈ 106)
• 𝑛 ≤ 10: target 𝒪(𝑛!) (10! ≈ 3.6 ⋅ 106)
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Memory limits

Memory limits are usually easily estimated based on our code.

Allocating an array of 𝑛 u32 values takes 4𝑛 bytes.

For example for 𝑛 ≤ 106 that array takes 4MB.

There’s some overhead from code and stack.

No separate stack limit.
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Other formats

Actual competitive programming contests are usually more restricted.

E.g. a round on Codeforces is limited to 120-180 minutes.

Usually no subtasks, penalties for wrong submits (“bombs”).

Team competitive contests where multiple (usually 3) people solve a problemset
with one computer.
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ICPC

International Collegiate Programming Contest

There’s also GCPC.

There was a group on TUM doing ICPC. They sometimes have posters.

icpc@in.tum.de
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Other contests

Codeforces

LeetCode

TopCoder

SPOJ

CodeChef

CodinGame

CodeWars

CodeCombat
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https://codeforces.com/
https://leetcode.com/
https://www.topcoder.com/
https://www.spoj.com/
https://www.codechef.com/
https://www.codingame.com/start/
https://www.codewars.com/
https://codecombat.com/


External resources

Introduction to Algorithms (4th ed.), Cormen et al. (The Algorithms Bible)

Algorithms and Data Structures book by the CS department of Virginia Tech

Competitive Programming Resources by Kunal Kushwaha

Programming Challenges: The Programming Contest Training Manual,
Skiena et al.

Competitive Programming book(s) by S. Halim, F. Halim and S. Effendy

Competitive Programming Handbook and others by Antti Laaksonen
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https://opendsa.cs.vt.edu/ODSA/Books/eu_book/html/index.html
https://github.com/kunal-kushwaha/Competitive-Programming-Resources
https://cpbook.net/
https://cses.fi/book/index.php


Course resources

Official Mattermost

Evaluation system

Course website
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https://mattermost.db.in.tum.de/signup_user_complete/?id=mgqbodh5riyhtpku5in4tfeswe&md=link&sbr=su
https://aacpp.db.in.tum.de/contest/
https://db.in.tum.de/teaching/ss25/aacpp
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